Outline

• Context of EO ground segments
• Presentation of image processing frameworks
• Selection of AI research lead by CNES
 • Analytics on VHR images (Quantcube, Irisa)
 • Scheduling of processing chains (CapGemini)
 • Transfer learning for new EO missions (Thales Alenia Space, Irisa)
 • Detection of clouds using traditional and AI techniques
• Conclusion and future work
Context for ground segment from CNES’ perspective

Earth observation is changing
• Increased volume of data and providers
• New actors

Rethinking: data platform and services
• Copernicus and Collaborative GS ➔ http://peps.cnes.fr
• ESA/EU: DIAS, TEP, MEP,
• Market Place business: Initiatives One Atlas and GBDX

A new business model:
• Users want more reactivity, data lifetime value is shortened
• Open data and open source
• Users want information!
Context for ground segment from CNES’ perspective

Data is a key element

- Big amount of EO data available at CNES
 - Sentinel 1,2,3 mirror of ESA
 - Pleiades data (limited to scientific usage)
 - Spot 1-5 archive (30 years)
 - Upcoming missions

- Current archive not entirely labeled
 - Permanently growing database
Open-source remote sensing image processing library

- Large community and easy to contribute: https://www.orfeo-toolbox.org/community/
- Image algorithms written in C++ and wrapped into OTB applications
- Easy to use and to incorporate into Python scripts: in-memory connection of OTB applications: https://www.orfeo-toolbox.org/CookBook/recipes/python.html
Image processing toolboxes

Important set of optimized and generic image processing libraries inherited from legacy missions

- Image resampling, deconvolution, denoising, etc.
- Sensor modeling (camera model)
- Correlation, image matching, image mosaicking, fusion
- Atmospheric corrections (joint algorithm CNES-DLR)
- Segmentation, Classification, 3D
- New: *Tensorflow-module*

Sub-set as open source library available on-line:

https://www.orfeo-toolbox.org/
Machine learning for analytics in VHR images

R&D project in progress

Main goal

- Count the number of vehicles in strategic locations using Deep Learning techniques and databases from various sensors (Pleiades, etc ...)

Challenges

- Definition of strategic points in VHR images
- Constitution of the learning database
- Definition of the neural network architecture
- Generalization of the procedure (detection of planes, boats, etc.)
- Demonstration of maturity for an operational application

Illustration of car detection in parking lots with drones
© University of Vermont Spatial Analysis Laboratory
Machine Learning for performance optimization of processing chains

Completed R&D activity

Main goal

- State-of-the-art of Machine Learning techniques for scheduling optimization with Reinforcement Learning
- Identification of available status (CPU, RAM, IO) and possible action (parameters)
- AI development to optimize orchestration and reduce production times
- Simulation strategies to explore optimal orchestrations

Results

- Successful implementation of genetic learning and reinforcement learning
- Compromise between generalization and learning time
Transfer learning

PhD work in progress (2018-2021)

Main goal

- Quantification of Deep Learning pros/cons vs. traditional methods
- Transfer learning to other sensors in order to obtain a fast and usable result at a lower cost
 → production of enriched data from the beginning of a new earth observation mission

Challenges

- Adapt Deep Learning models from one sensor to another (adaptation layers) and answer the question: How to transfer knowledge between different feature spaces?
- Improve the efficiency of current processing chains through the combined use of Deep Learning and traditional methods
Machine learning for cloud detection and transfer learning

Ongoing internal project

- Development of a new Deep Learning processing chain for cloud/snow/shadow detection in Sentinel-2 images
- Comparison with the output masks of MAJA

Illustration of cloud detection with MAJA on S2 images © Cesbio
Cloud detection in detail

- Training, Validation and Comparison: MAJA’s Level-2 cloud masks, coming from THEIA:

- Resampling of images to same resolution as MAJA (240m/120m) → Equal conditions

→ Total of 1000 Level-2 and Level-1 Sentinel-2 products available daily
Cloud detection in detail:

Creating an adaptable model

Different configurations for the output classes:

- Clouds (different types)
- Shadows (with and without)

Transfer learning approach

- Using existing models: Unet, VGG etc. → Variation with regularization techniques
- Current best F2-Score for single class (clouds): **91% (Unet)**
- Usage of active learning for the future

Unet illustration © Uni Freiburg
Cloud detection in detail

Cloud Clear Omission Overdetection
Cloud detection in detail

Cloud Clear Omission Overdetection
Conclusions and future work

Continuous researches together with industry, startups and academics

- Preparation of future EO missions and applications with innovative technologies
 - Deep Learning for analytics
 - Artificial intelligence combined with traditional approaches

Perspectives

- Validation of AI implementations for operational services
- Deployment on existing platforms (HPC, DIAS)