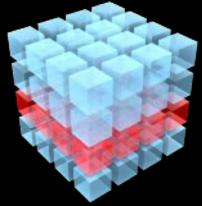


Datacube Services on a Satellite: the ORBiDANSe Project

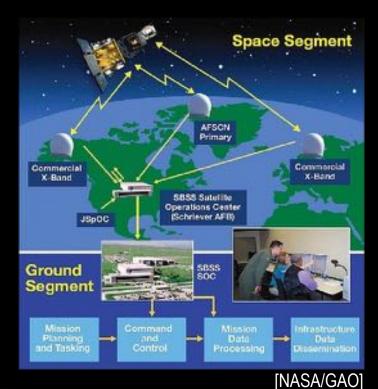
ESA Phi Week, Frascati, 2018-nov-16 Peter Baumann & the rasdaman team Jacobs University | rasdaman GmbH

SPONSORED BY THE


Federal Minis of Education and Research

rasdaman: Big Datacube Analytics

- = <u>"ras</u>ter <u>da</u>ta <u>man</u>ager": SQL + n-D datacubes
 - massively scalable Big Datacube Analytics engine
 - 2.5+ PB; 1000x parallelization
- "leading technology" (ESA 2017)
 - Invented datacubes [Baumann 1992]
 - Datacube reference implementation



Problem Statement: Satellite Data Access

- Satellite downlink = bottleneck
- Expensive ground segment infrastructure
- No realtime direct user access to acquisition data
- Downlink transmission not comprehensive

Sentinel-1A: One Day of Acquisitions

ORBiDANSe: Orbital Big Data Analytics Service

- Idea: reduce download through "what you get is what you need" paradigm
- "ship code to data"
 - = on-board processing
 - Ship query get analysis result
 - satellite \rightarrow datacube service
 - rasdaman on board

OPS-SAT

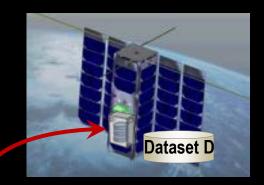
 "OPS-SAT is devoted to demonstrating drastically improved mission control capabilities that will arise when satellites can fly more powerful on-board computers.

[ESA/OPS-SAT]

- It [...] contains an experimental computer that is ten times more powerful than any current ESA spacecraft."
- <u>http://www.esa.int/Our_Activities/Operations/OPS-SAT</u>

OPS-SAT

- ESA experimental 3U cubesat: "use better hardware, do more on-board processing"
- Problem: radiation → OPS-SAT: 80286 + mityARM
 - 4x (dual ARM A9 @800MHz, FPGA, 1 GB RAM)
 - ADCS, GPS, Nadir-looking RGB camera, SDR + X-band downlink, ...
 - Yocto Linux
- planned launch: 2019



[ESA/OPS-SAT]

ORBiDANSe: Approach

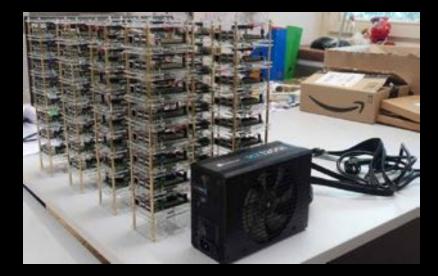
- Swath data + GPS \rightarrow rasdaman
 - In this experiment: L0, no higher-level processing ...not enough compute capacity
- Experiments:
 - Query satellite via OGC WC[P]S
 - Link into federations
 - DIAS, CODE-DE, ...

Dataset C

Dataset A

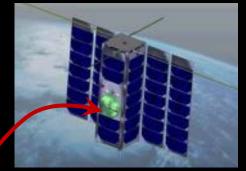
ataset B

Byproduct: Raspberry Pi Cluster


- OPS-SAT porting challenges
 - VM not working (and other issues)
- Raspberry processor
 = OPS-SAT processor = ARM
- Raspberry cluster
 - 8 towers x 8 Raspberry 3B
 - 1.4 GHz, 1 GB RAM, 32 GB Sandisk
 - Altogether: 4 TB
 - Wifi connection

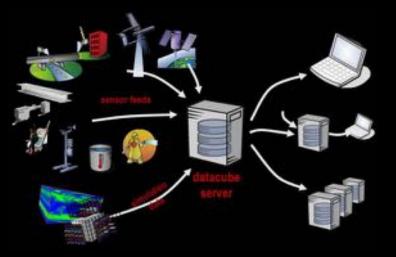
ORBiDANSe: Status & Plans

- Done: Porting rasdaman to ARM
 - Challenges: libraries, compilation, ...
- Done: cluster HW setup
 - Some challenges with hw failures
- Ongoing: cluster demo setup
 - Distributed datacube
- Ongoing: port to target hw


Following launch: on-board experiments: querying, federation, ...

Summary

- ORBiDANSe = "ship code to (big) data" for satellites
 - Intelligent sensors: satellite \rightarrow queryable database
 - Speed up & simplify EO data access
 - Based on rasdaman = flexible datacube engine
- OPS-SAT = opportunity for feasibility demonstrator
 - To be followed by large-scale experiment
- Not replacement,


but addition to conventional downlink

Outlook

- On-board Array Database as a commodity
- Swarms
- Unmanned underwater vehicles
- Vision: any query, from any source, at any time

