Exploiting contextual features in superpixels for land cover mapping using high resolution image time series Phi-Week 2018

Dawa Derksen, Jordi Inglada, Julien Michel

November 12, 2018

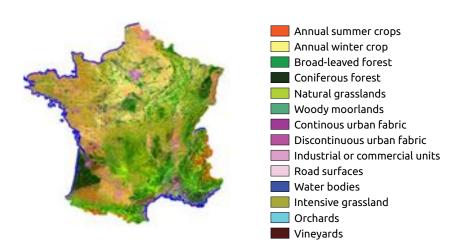
Table of Contents

1 Introduction

2 Contextual features

D. Derksen Exploiting contextual features November 12, 2018 2 / 20

Large-scale land cover mapping



► Each pixel is described by a time series of optical reflectances (R, G, B, IR, etc.) and spectral indices (NDVI, NDWI, etc.)

- ► Each pixel is described by a time series of optical reflectances (R, G, B, IR, etc.) and spectral indices (NDVI, NDWI, etc.)
- ► Series of Sentinel-2 images
 - ▶ 110km × 110km at 10m
 - ▶ 13 spectral features / date
 - ▶ 33 dates (year : 2016)
 - 489 features
 - Approximately 90Gb

- ► Each pixel is described by a time series of optical reflectances (R, G, B, IR, etc.) and spectral indices (NDVI, NDWI, etc.)
- ► Series of Sentinel-2 images
 - ▶ 110km × 110km at 10m
 - ▶ 13 spectral features / date
 - ▶ 33 dates (year : 2016)
 - 489 features
 - Approximately 90Gb
- ► This description is not sufficient to separate all of the desired land cover classes

- Continous urban cover (red)
- Diffuse urban cover (orange)
- Industrial and commercial areas (mauve)

- Continous urban cover (red)
- Diffuse urban cover (orange)
- Industrial and commercial areas (mauve)
- ► The difference lies in the context of the pixel

Table of Contents

1 Introduction

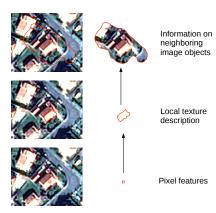
2 Contextual features

Results

- Popular approach nowadays
 - Deep Convolutional Neural Network (D-CNN)
 - Context implicit in the first layers
 - Has proven to be accurate on many problems
 - Heavy computational load
- Operational context, large data volumes
- Speed and efficiency are essential
- Can the same performance be achieved with alternative methods ?

Proposed method

 Using features from superpixel neighborhoods at one or several scales



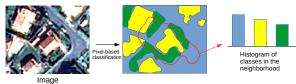
Superpixels: illustration

SLIC superpixel segmentation

Mean Shift segmentation

Auto-Context

► From an initial pixel-based classification, we can calculate the histogram of the classes in one or several neighborhoods



Auto-Context

► From an initial pixel-based classification, we can calculate the histogram of the classes in one or several neighborhoods

- ► This histogram is used as a feature for generating a new classification
- ▶ The process can be iterated several times
- ► Compact feature (14 vs 330 dimensions)
- Adapted for use multi-scale application

Deep Convolutional Network

- U-net type architecture adapted to time series classification
- Combined with fully connected, pixel resolution MLP
- Weight sharing in the first layers

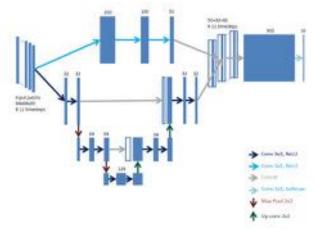


Table of Contents

1 Introduction

2 Contextual features

3 Results

► Tests on 4 different 110x110 km areas

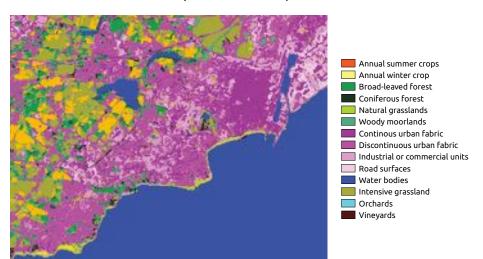
	Карра	OA
T31TDN		
RF (pixel)	89,53 %	91,87 %
AC	89,42 %	92,19 %
MLP_Unet	89,82 %	92,49 %
T30TXQ		
RF (pixel)	82,87 %	90,61 %
AC	86,90 %	93,31 %
MLP_Unet	87,74 %	93,77 %
T31TGK		
RF (pixel)	64,24 %	71,01 %
AC	66,66 %	73,10 %
MLP_Unet	67,20 %	73,67 %
T31UDQ		
RF (pixel)	75,02 %	79,40 %
AC	84,70 %	88,70 %
MLP_Unet	86,13 %	89,78 %

Table: Computation times

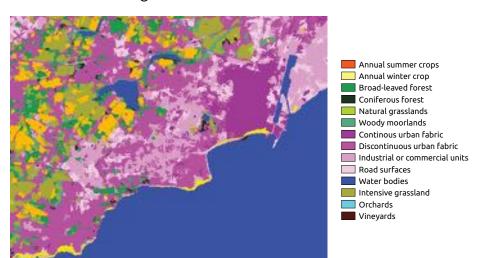
Method	Training time/CPU
RF	≈25h
Auto-Context	≈80h
MLP-Unet	≈3300h

Image, first date, RGB channels

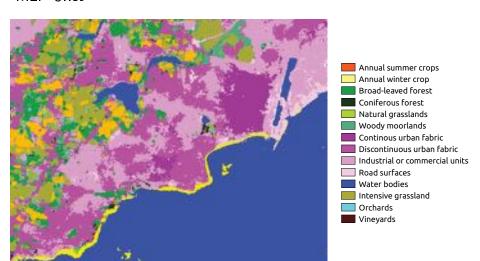
Pixel based classification (Random Forest)

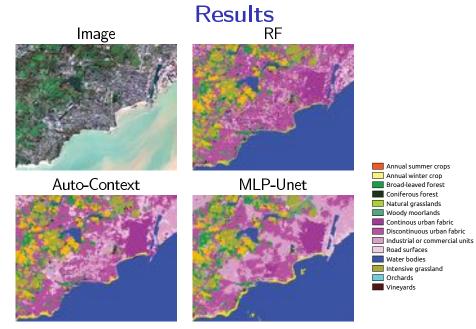


Auto-Context histograms



MLP-Unet





Conclusion and perspectives

- Deep Convolutional Neural Network
 - Strongest results on urban classes
 - Also deteriorates some other classes
- Superpixel + Auto-Context histograms
 - Similar overall performance to Deep Learning methods
 - Consistent improvement on all classes
 - Lower computational burden
- ► Can be an alternative to Deep Learning
- Should be validated further
 - ▶ Wider range of Sentinel-2 areas
 - Very High Resolution Pleiades images

Thank you for your attention

Creative Commons Attribution-ShareAlike 4.0 International License

