A Geometrical Approximation of PCA for Hyperspectral Data Dimensionality Reduction A. Machidon, R. Coliban, M. Ivanovici, F. Del Frate

prof. Mihai Ivanovici Universitatea Transilvania din Brașov, Romania

12-16 November 2018 ESA Earth Observation Φ-Week Frascati, Italy

- Principal Component Analysis (PCA) widely-used statistical tool for multivariate signal analysis
- PCA is model-based, assuming a normal (Gaussian) distribution
- is multi- and hyper-spectral remotely-sensed data really Gaussian?

PCA directions are given by the majority of the data

- none of the existing PCA approaches (including approximations) can be accelerated by a [fully] parallel implementation
- we propose a data-driven approach for PCA approximation, which can be implemented in parallel
- moreover, the PCA directions can be indicated (with a given accuracy) by few points in the data (*outliers**)

^{*}from the point of view of the Chebyshev inequality for any distribution.

Hypothesis

Observation: the direction given by the furthest points is *relatively close* to the one given by the 1st principal component †

Figure 1: 2D synthetic data (in blue) with standard PCA (in magenta) and approximated PCA (in green) axes for various values of the correlation coefficient ($\rho = 0.5, 0.7, 0.9$).

¹ Machidon, A., Coliban, R., Machidon, O., Ivanovici, M. (2018). Maximum Distance-based PCA Approximation for Hyperspectral Image Analysis and Visualization. In 41st International Conference on Telecommunications and Signal Processing, IEEE, Athens, July 2018.

Approach

1. identify the two elements in a set of *n*-dimensional vectors $P_1 = {\mathbf{p_{11}, p_{12}, ...}} \subset \mathbb{R}^n$ separated by the maximum distance:

$$\{\mathbf{e_{11}}, \mathbf{e_{12}}\} = \arg \max_{\mathbf{p_{1i}}, \mathbf{p_{1j}} \in P1} d(\mathbf{p_{1i}}, \mathbf{p_{1j}})$$
(1)

The 1st basis vector is \mathbf{v}_1 that connects the 2 points:

 $v_1 = e_{11} - e_{12}$

In order to compute the 2nd basis vector, all the elements in P₁ are projected onto the hyperplane H₁, determined by the normal vector v₁ and containing m (the midpoint of the segment that connects the two points):

$$H_1 = \{ \mathbf{x} \in \mathbb{R}^n | < \mathbf{v}_1, \mathbf{x} > = < \mathbf{v}_1, \mathbf{m} > \}$$
(2)

This results in a set of projections of the original points, $P_2 = \{\mathbf{p_{21}}, \mathbf{p_{22}}, ...\}$, computed using the following formula:

$$\mathbf{p_{2i}} = \mathbf{p_{1i}} + (<\mathbf{v_1}, \mathbf{m} > - <\mathbf{v_1}, \mathbf{p_{1i}} >) \cdot \mathbf{v_1} / ||\mathbf{v_1}||^2 \quad (3)$$

The approach illustrated

After the identification of the two projections separated by the maximum distance {e₂₁, e₂₂}, the second vector, v₂, is computed as the difference between the two values, and so on...

Figure 2: Approximated principal components axes on a 3D correlated cloud of points.

Error metrics

- 100 random sets of 1k 2D points with Gaussian distribution, correlation coefficient from 0.5 to 1, in steps of 0.1.
- Two evaluation metrics:
 - 1. error angle between the 1st PC and the approximated one
 - 2. error distance between the mean and the midpoint of the segment given by the furthest points

Figure 3: Boxplots of the error angle (left) and error distance (right).

Experimental results - hyper-spectral image visualization

 application: PCA approximation for hyper-spectral image analysis and visualization (Pavia univ. data set).

Figure 4: First three computed (top) vs. approximated (bottom) principal components of Pavia image and PCA-based visualization.

Experimental results using INTA-AHS data

- airborne INTA-AHS instrument data set has been acquired during ESA AGRISAR measurement campaign
- test site is the area of Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN)
 - consolidated test site located in Mecklenburg-Western
 Pomerania, North-East Germany, covering approx. 25 000 ha
 - ▶ fields are very large in this area (in average, 200–250 ha)
 - main crops are wheat, barley, rape, maize, and sugar beet
 - altitudinal range within the test site is around 50 m
- The AHS has 80 spectral channels in the visible, shortwave and thermal IR, pixel size of 5.2 m
- The acquisition taken on the 6 June 2006 has been considered

Input data

Figure 5: AGRISAR 2006 Ground Truth (left) and AHS crop region (right); Red-Band 6, Green-Band 4, Blue-Band 2.

- Comparison between classical PCA, approximated (proposed) and non-linear PCA performed by NN[‡]
 - multi-layer perceptron with backpropagation learning
 - topology of NN used: one hidden layer with 20 nodes, 5 input and 6 output nodes
- Only the first 5 PCs were considered (99% of information)
- Learning was performed using the Neumapper sw application provided by EO Laboratory at Univ. of Rome "Tor-Vergata"

⁺Giorgio A Licciardi and Fabio Del Frate. Pixel unmixing in hyperspectral data by means of neural networks. IEEE Transactions on Geoscience and Remote Sensing, 49(11):4163–4172, 2011.

PCs - computed, approximated and learned

(f) Apprx1 (g) Apprx2 (h) Apprx3 (i) Apprx4 (j) Apprx5

(k) Nonln1 (l) Nonln2 (m) Nonln3 (n) Nonln4 (o) Nonln5

Classification - qualitative comparison

(a) Computed PCA

(b) Approx. PCA

(c) Nonlinear PCA

Figure 7: Classified images based on computed PCA (left), approximated PCA (middle) and non-linear PCA (rigt) of the DEMMIN test site of AHS image.

Class	Description	PCA	Approx.PCA	Nonlin. PCA
1	Rape	100%	100%	100%
2	Set aside: rape	50%	50%	50%
3	Maize	100%	100%	100%
4	Winter wheat	100%	90.5%	95%
5	Cutting pasture	66.7%	66.7%	66.7%
6	Grassland	66.7%	100%	66.7%
7	Winter barley	-	-	-
8	Urban	75%	75%	75%

Table 1: Classification accuracy (true positives) for 40 randomly-chosen pixels.

Conclusions and future work

- Comparable results in terms of classification for the classical, approximated and learned PCA, however a more thorough analysis is required
- Comparison showed questionable results locally
- Improve the protocol of validation by fully automatic check within the ground truth
- Parallel implementation of the PCA approximation on GPUs using CUDA
- Demonstrate the capabilities of the PCA approximation parallel implementation in a satellite Big Data scenario