

→ THE ESA EARTH OBSERVATION Φ-WEEK

EO Open Science and FutureEO

12-16 November 2018 | ESA-ESRIN | Frascati [Rome], Italy

A Software Platform for Maritime Monitoring and Prompt Target Characterization

> Marco Reggiannini 16/11/2018

The set of th

Why?	
<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>	
U	

- -- -+

European Space Agency

Why?

Fish stocks in the Mediterranean Sea are

03

Saving our heritage, our future: The worrying state of Mediterranean fish stocks

Migration crisis

+

European Space Agency

Pollution

03

Maritime observation through satellite missions

• SAR

Maritime observation through satellite missions

European Space Agency

+

esa

Detect

European Space Agency

•

Constant False Alarm Rate

•

Detection

+

esa

Morphological information

Iterative procedure based on sigma-thresholding

Geometrical information

European Space Agency

European Space Agency

Estimation - Vessel Kinematics

Wake pattern

European Space Agency

European Space Agency

+

European Space Agency

European Space Agency

__ II ▶_ 33 ━ + II ━ ≝ _ II II 二 _ 35 ₩ _ 0 II _ 35 ₩ ₩ `=

European Space Agency

· _ II > :: = + II = :: _ II II _ _ :: _ :: :: ** ... // II _ :: :: ** ... // // // :: :: :: ** ** /

European Space Agency

European Space Agency

+

European Space Agency

•

European Space Agency

•

+

European Space Agency

esa

esa

OSIRIS

Optical/SAR data and System Integration for Rush Identification of Ship models

https://wiki.services.eoportal.org/tikiindex.php?page=OSIRIS

Thank you

_ II ⊾ :: ■ + II ■ ≝ _ II II _ Z = :: II ■ II _ II . . .

Wake pattern: SAR visual feature providing information about the vessel kinematics

Stripmap HImage 5m px resolution

 $\Delta \approx 1645 \, m, V_{ship,r} \approx 33.95 \, kn$

 $\Delta \approx 175 \, m, V_{ship,r} \approx 3.63 \, kn$

Ship's speed - 2

Future Prospects

- Implementation of a novel method for wake detection in SAR maps
- Joint exploitation of wake analysis results and fine segmentation output

Morphological Features for classification

Radiometric Features for classification

1 - Mean value of RCS 2 - Standard Deviation of RCS 3 – Ratio of Standard Deviation and Mean 4,5 – Normalized centers in x, y direction 6÷12 – Hu Invariant Moments 13 – Fractal dimension 14 – Power filling ratio 15 – Space filling ratio

Features from SAR imaging

Heading

Considerations

- Bisector if three components are observed
- Turbulent direction (brightest component)
- No sinusoidal component is observed
- Nearest one to the Ship segmentation estimation

Heading

