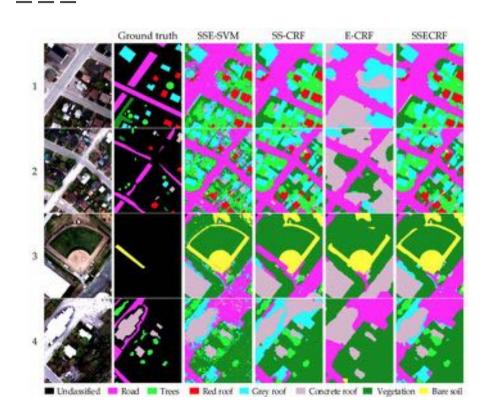
HyperLabelMe: A web-platform for benchmarking remote sensing image classifiers

Jordi Muñoz-Marí, Luis Gómez-Chova, Ana B. Ruescas Gonzalo Mateo-García,, Emma Izquierdo-Verdiguier Manuel Campos Taberner, <u>Gustau Camps-Valls</u>

Image Processing Lab (IPL) Universitat de València

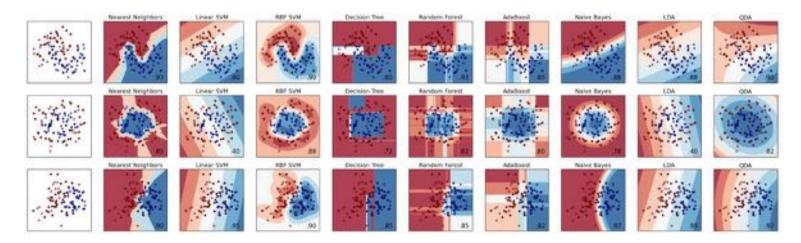
Artificial intelligence, deep and machine learning


ARTIFICIAL INTELLIGENCE MACHINE Early artificial intelligence stirs excitement LEARNING Machine learning begins DEEP to flourish LEARNING Deep learning breakthroughs drive Al boom 1950's 1960's 1970's 1980's 1990's 2000's 2010's

Al: Intelligence demonstrated by machines rather than humans or animals.

ML: Giving computers the skills to learn without explicit programming

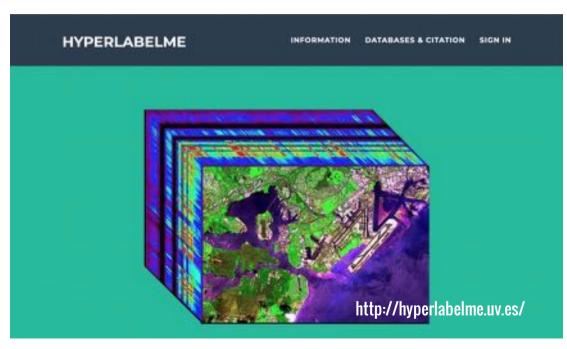
DL: Is an ML subset, examining algorithms that learn and improve on their own.


Remote sensing image classification

- Goal: "generate spatially explicit maps from remote sensing observations"
- Machine learning
 - Automates the process
 - Fast
 - Accurate
- Many different classifiers
 - SVM, RF, Boosting, Neural nets

Machine learning classifiers

- Computational cost?
- Accuracy?
- Easiness?
- Robustness to dimensionality?



Hyperlabelme

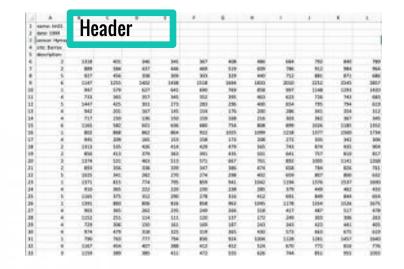
http://hyperlabelme.uv.es/

Hyperlabelme:

- A platform to evaluate machine learning classifiers
- Harmonized large set of labeled multispectral and hyperspectral images
 - Number of classes
 - Dimensionality
 - Noise sources and levels
- Scalable and modular

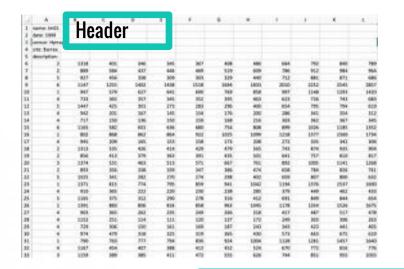
Download image datasets

- HyperLabelMe runs a FAIR-use data policy
 - Data freely available to the public and scientific community
 - Download spectra and corresponding labels
 - Run your algorithms offline
 - Upload results
 - Get your scores


Datasets are in plain text

ld	Acronym	Sensor	Rows	Columns	Bands	Classes	Download
1	Barrax99	Hymap	670	700	128	6	hn01
2	Botswana	EO-1	1476	256	145	14	lm02
3	KSC	AVIRIS	512	614	176	13	1002
4	FlightLineC1	M7scanner	949	220	12	1,0	inos
5	Indian Pines	AVIRIS	145	145	220	16	Im05
6	TipJul1	Landset	169	169	7	5	lm96
7	Pavia	DAIS7915	400	400	40	9	lm02
8	Salinas	AVIRIS	217	512	224	16	Im08
9	Fahas	NaN	1094	2357	4	. 5	1m09

Datasets are in plain text



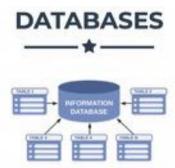
ld	Acronym	Sensor	Rows	Columns	Bands	Classes	Download
1	Barrax99	Hymap	670	700	128	6	1001
2	Botswana	EO-1	1476	256	145	14	lm02
3	KSC	AVIRIS	512	614	176	13	1m02
4	FlightLineC1	M7scanner	949	220	12	10	lm04
5	Indian Pines	AVIRIS	145	145	220	16	lm05
6	TipJul1	Landsat	169	169	7	5	lm06
7	Pavia	DAIS7915	400	400	40	9	Im02
8	Salinas	AVIRIS	217	512	224	16	lm08
9	Fahas	NaN	1094	2357	4	5	1m09

Datasets are in plain text

ld	Acronym	Sensor	Rows	Columns	Bands	Classes	Download
1	Barrax99	Hymap	670	700	128	6	hn01
2	Botswana	EO-1	1476	256	145	14	lm02
3	KSC	AVIRIS	512	614	176	13	1002
4	FlightLineC1	M7scanner	949	220	12	1,0	inos
5	Indian Pines	AVIRIS	145	145	220	16	Im05
6	TipJul1	Landset	169	169	7	5	lm96
7	Pavia	DAIS7915	400	400	40	9	lm02
8	Salinas	AVIRIS	217	512	224	16	lm08
9	Fahas	NaN	1094	2357	4	. 5	1m09

The first column is the class label, the rest the spectra

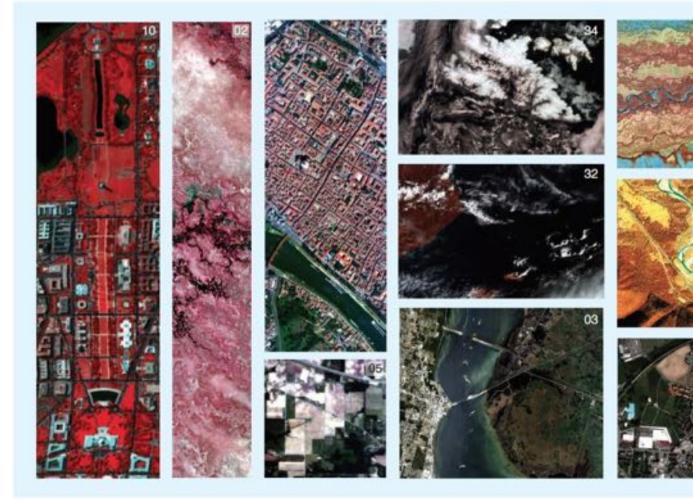
Pone: Ced2 date: 2001-2004 cencor: E0-1 site: Botswana description:


6, 4884, 3674, 1804, 3436, 3636, 2646, 2846, 2357, 2741, 2736, 2738, 2614, 2346, 2243, 2307, 2647, 2311, 286 2, 1876, 1831, 1234, 1236, 1236, 1235, 1637, 1647, 1648, 2868, 2369, 2373, 1777, 1784, 1785, 2864, 1864, 1868, 1862, 177 2, 1274, 1311, 1234, 1234, 1844, 1659, 1877, 1832, 1148, 2868, 2868, 2868, 2868, 2868, 2768, 2767, 1784, 1784, 2, 2436, 1463, 1261, 1237, 1286, 1004, 1616, 1617, 1234, 1332, 1336, 1336, 1374, 1468, 1588, 1524, 1339, 2468

Lang, 1514, 1617, 1579, 1707, 1893, 1899, 1877, 1018, 2174, 1996, 600, 1887, 772, 613, 603, 1877, 771, 681, 1875,

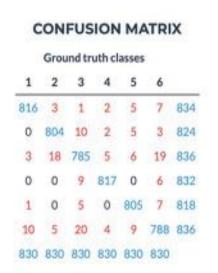
1325, 1214, 1174, 1199, 1874, 998, 784, 898, 658, 785, 778, 767, 768, 678, 912, 878, 899, 868, 795, 795, 834, 8 87, 876, 371, 425, 286, 286, 386, 484, 498, 438, 548, 548, 543, 526, 513, 527, 514, 586, 585, 584, 476, 476, 462

446, 432, 419, 412, 393, 373, 349, 338, 327, 297, 248, 374, 315, 316, 381, 389, 334, 315, 336, 168, 376, 177, 37

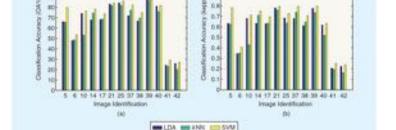

Easy to read

ld	Acronym	Sensor	Rows	Columns	Bands	Classes	Download
1	Barrax99	Hymap	670	700	128	6	in01
2	Botswana	EO-1	1476	256	145	14	lm02
3	KSC	AVIRIS	512	614	176	13	1000
4	FlightLineC1	M7scanner	949	220	12	10	In04
5	Indian Pines	AVIRIS	145	145	220	16	Im05
6	TipJul1	Landset	169	169	7	5	lm06
7	Pavia	DAIS7915	400	400	40	9	lm02
8	Salinas	AVIRIS	217	512	224	16	BOst
9	Fahas	NaN	1094	2357	4	. 5	1m09

```
import numpy as np
def dataread(filename):
    lasttag = 'description:'
    # Open file and locate lasttag
    f = open(filename, 'r')
    n1 = 1
    for line in fi
       if line.startowith(lasttag); break
    f.close()
    data = sp.loadtxt(filename, delimiter=',', skiprovs=nl)
    T = data[1, 0]
    K = data[:, 1:]
    # Separate train/test
    Ktest - X[Y < 0, 1]
    X - X[Y >= 0, 1]
    Y = YIY >= 0, None1
    return X, Y, Xtest
def datawrite(method, dataset, Tp);
    filename = '(0) (1) predictions.txt'.format(method, dataset)
    res = True
    try:
        with open(filename, mode='w') as fr
            f.write('(0) (1)'.format(method, dataset))
            for w in Ypi
                f.write( '(0)'.format(str(v)))
            f.write('\n')
    except Exception as e:
        print('Error', e)
        res - Talse
    return res
```

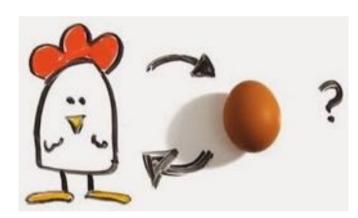

We provide examples in MATLAB, Python and R of how to read the datasets.




Train your models offline and upload your predictions

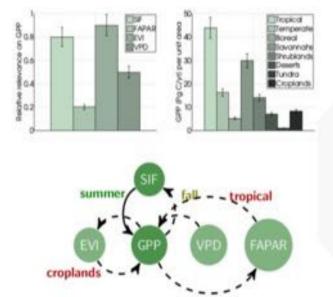
```
-/Downloads/transfication demo MATLANdscafeed m.
     function [X, Y, Xtest] = dataRead(filename)
     lasttag - 'descriptions's
                                                                                                                                                      -/Downloads/visus/Acadion: dame. MATLAS/dataWrite or a
                                                                    -/Downloads/classification demo MATLAS/classification.example.m.,
                                                                                                                                                            function dataWrite(method, dataset, Yp)
     A Open file and locate lasttag
                                                                            clear, clc
     f = fopen(filename, "r");
                                                                                                                                                           A Generate test file for validation on hyperlabelme server
     nl = 1:
                                                                            % Read dataset
     while -feef(f)
                                                                                                                                                            4 method: name of the method
         line + fgetl(f);
                                                                            [X, Y, Xtest] = dataRead('In81.txt');
                                                                                                                                                               dataset; name of the dataset
         if strmcmp(line, lasttag, length(lasttag))
                                                                            % Use a simple linear classifier
                                                                                                                                                                        predictions as a column vector
                                                                            Yo = classify(Xtest, X, Y):
                                                                                                                                                            feame = sprintf("As_As_predictions.txt", method, dataset);
         at = at + 11
                                                                            % Write results
                                                                            dataWrite('LDA MATLAB', 'Imbl', Yp);
                                                                                                                                                            f = fapen(fname, ");
     fclose(f);
                                                                                                                                                            fprintf(f, 'he he', method, detaset);
                                                                                                                                                            fprintf(f, ' be', Tp);
                                                                                                                                                            forantfile, "he"3:
     data = dimread(filename, ',', nl, 0);
                                                                                                                                                            fclose(f);
     Y = data(:,1);
     X = data(r, 2)end(r)
     Xtest = X(Y \times 0,1)2
     X = XXY == 0,111
     Y = YEY so 0, 11;
                                                                                                                                                                                   Save
                                                                                                 Train
```

Train your models offline and upload your predictions


- . Overall accuracy: 96.69 %
- Kappa coefficient: 0.96, Cl: ±0.005965, z-score: 315.500146

Class 1 2 3 4 5 6
User's acc: 97.84 97.57 93.90 98.20 98.41 94.26
Prod's acc: 98.31 96.87 94.58 98.43 96.99 94.94

Causeme: understanding is harder than predicting!

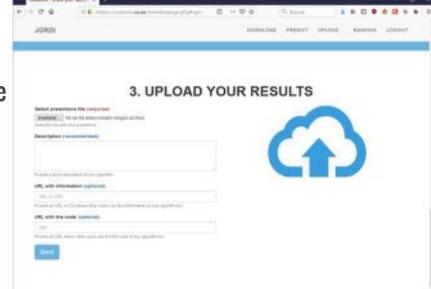

http://causeme.uv.es/

- Learn what's the cause and the effect from time series of variables
- Important implications in Earth science and climate

"Inferring causation from time series with perspectives in Earth system sciences"
Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.

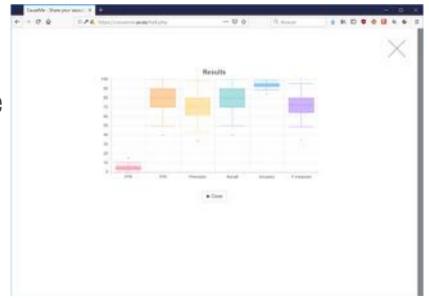
"Causal Inference in Geoscience and Remote Sensing from Observational Data,"
Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018

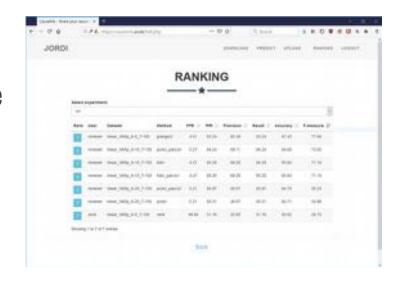
- CauseMe: http://causeme.uv.es
 - Download time series with ground truth
 - Run your causal discovery algorithm offline
 - Upload your causal graph
 - Get your results!


"Inferring causation from time series with perspectives in Earth system sciences"
Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.

"Causal Inference in Geoscience and Remote Sensing from Observational Data,"
Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018

CauseMe: http://causeme.uv.es


- CauseMe: http://causeme.uv.es
 - Download time series with ground truth
 - Run your causal discovery algorithm offline
 - Upload your causal graph
 - Get your results!


"Inferring causation from time series with perspectives in Earth system sciences" Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.

"Causal Inference in Geoscience and Remote Sensing from Observational Data,"
Pérez-Suav and Camps-Valls, IEEE Trans, Geosc. Rem. Sens, 2018

- CauseMe: http://causeme.uv.es
 - Download time series with ground truth
 - Run your causal discovery algorithm offline
 - Upload your causal graph
 - Get your results!

- CauseMe: http://causeme.uv.es
 - Download time series with ground truth
 - Run your causal discovery algorithm offline
 - Upload your causal graph
 - Get your results!

Conclusions

Conclusions

- A fact: Remote sensing needs machine learning
- A question: What's the best classifier for my specific task?
- An observation: Often the simpler is the better
- Our aim: Hyperlabelme is a simple web platform to benchmark classifiers
- Working towards extensions:
 - Spatial context
 - Spatio-temporal classifiers
- Some relatives:
 - Causal discovery in time series
 - Regression (parameter retrieval) algorithms

Please contribute!

http://hyperlabelme.uv.es

http://causeme.uv.es

http://regressme.uv.es