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Standard machine learning

● Supervised learning
–

Classification

–
Regression & model inversion

–
Anomaly/target detection

● Unsupervised learning
–

Density estimation

–
Dimensionality reduction

–
Clustering



 

Standard supervised machine learning

F(X) = y

● X: observations, independent covariates

● Y: target, dependent variable

● F: machine learning model (nonlinear, nonparametric, flexible, learned from data)



 

#1 – Spatio-temporal image classification

● Convolutional neural nets (CNN): hierarchical structure exploits spatial relations

● Long short-term memory (LSTM): recurrent network that accounts for memory/dynamics

“A Deep Network Approach to Multitemporal Cloud Detection”

Tuia, Perez-Suay and Camps-Valls, IEEE IGARSS 2018, http://isp.uv.es/code/landmarks.html



 

#2- Spatio-temporal variable prediction

● STA is common place in climate informatics, neuroscience, video processing, NLP, ...

● Current approaches
–

CNN + LSTM

–
Space-time (deep) GPs

–
Combine CNN+GPs

● Many applications in Remote Sensing
–

Parameter retrieval / estimation

–
Time series gap filling

–
Sensor fusion / Data assimilation

“ A Survey on Gaussian Processes for Earth Observation Data Analysis”

Camps-Valls et al. IEEE Geoscience and Remote Sensing Magazine 2016

“ Statistical Retrieval of Atmospheric Pro-les with Deep Convolutional Neural Networks”, 

Malmgren-Hansen, D. and Laparra, V. and Camps-Valls, G.,  IEEE TGARS, 2018



 

Physics-aware machine learning

F(X,        ) = y



 

#1 - Physics-driven ML: constrained optimization

● ML that respects laws of physics (e.g. consistency model-data, convection, advection, mass and energy conservation)

Minimize model violations

Fair ML

“Joint Gaussian Processes for Biophysical Parameter Retrieval” Svendsen, Martino, Camps-Valls, IEEE TGARS 2018

“Physics-aware Gaussian processes in remote sensing” Camps-Valls, G. et al. Applied Soft Computing, 2018.

“Theory-guided Data Science”, Karpatne, A. et al.  IEEE Trans. Know. Data Eng., 2017.

Joint Model-Data ML

“Fair Kernel Learning” Perez-Suay, Laparra, Gomez-Chova, Camps-Valls, G. et al. ECML, 2017.



 

#2 - Physics-driven ML: hybrid modeling framework

● ML that learns laws of physics (e.g. consistency model-data, convection, advection, mass and energy conservation)

“Deep learning and process understanding for 

data-driven Earth System Science” 

Reichstein, Camps-Valls et al. Nature, 2018.

B: A motion field is learned with a 

convolutional-deconvolutional net, and 

the motion field is further processed 

with a physical model

A: “Physisizing” a deep learning 

architecture by adding one or several 

physical layers after the multilayer

neural network

“Deep Learning for Physical Processes: 

Incorporating Prior Scienti-c Knowledge”. 

de Bezenac, Pajot, & Gallinari, arXiv:1711.07970 (2017).



 

#3- Physics-driven ML: emulation of complex codes

● GP Emulation = Mathematical tractability + Global sensitivity analysis + Speed

“Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis”, 

Verrelst, Camps-Valls et al  Remote Sensing of Environment, 2016

“Emulation as an accurate alternative to interpolation in sampling radiative transfer codes”, 

Vicent and Camps-Valls, IEEE Journal Sel. Topics Rem. Sens, Apps. 2018



 

#3- Physics-driven ML: emulation of superparam. models

● NN Emulation of a superparameterized model: no virtual error, 10x faster

“Deep learning to represent subgrid processes in climate models” Rasp, Pritchard, Pierre Gentine, PNAS 2018



 

#4- Physics-driven ML: encoding and learning ODE/PDEs

● Who needs Navier Stokes? 

“Discovering governing equations from data by sparse identi-cation of nonlinear dynamical 

systems” Brunton, Proctor, Kutz, PNAS 2016

“Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Di7erential Equations” 

Raissi, JMLR 2018

● Who needs Schrödinger?

● Who needs Lorenz? 



 

Understanding is more important than fitting

F(X,y) = 



 

#1- Feature selection & ranking

● Filters & wrappers

“Remote Sensing Feature Selection by Kernel Dependence Estimation”, Camps-Valls, G. Mooij, JM. Schölkopf, IEEE-GRSL, 2010.

“A guided hybrid genetic algorithm for feature selection with expensive cost functions”, M. Jung, J. Zscheischler, Procedia, 2013.



 

#2- Neuron and bases visualization

● What did the network learn?
● How do bases change in time, with real/simulations/together, under extremes?

“Visualizing and Understanding Convolutional Networks”, Zeriler, et al 2013

“Processing of Extremely high resolution LiDAR and optical data”, Campos-Taberner, Camps-Valls et al, 2016

“DeeplyOut: What did your network learn under anomalies and adaptation? ,” Camps-Valls et al, JMLR (2019)



 

#3- Graphical models and causality

● Causality discovery learns cause and effects relations from data

● What for? Hypothesis testing, model-data comparison, causes of extreme impacts

“Inferring causation from time series with perspectives in Earth system sciences”, Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.

“Causal Inference in Geoscience and Remote Sensing from Observational Data,” Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018

“CauseMe: An online system for benchmarking causal inference methods,” Muñoz-Marí, Mateo, Runge, Camps-Valls. In preparation (2019). CauseMe: http://causeme.uv.es



 

Conclusions



 

Conclusions

● Machine learning in EO and climate
○ Many techniques ready to use

○ Huge community, exciting tools

● Solid mathematical framework
○ Multivariate data

○ Multisource data

○ Structured spatio-temporal relations

○ Nonlinear feature relations

○ Fitting & understanding

● Risks: addictive, overfitting, overlooking

● Remedies: Physics-driven ML, Explainable AI, Causality


