

→ THE ESA EARTH OBSERVATION Φ-WEEK

EO Open Science and FutureEO

12-16 November 2018 | ESA-ESRIN | Frascati (Rome), Italy

"HORUS Cluster: the S5Lab CubeSat-based multiangle and multi-spectral Earth Observation system"

Alice Pellegrino, Fabio Santoni, Federico Curianò, Andrea Gianfermo, Francesco Feliciani

ESA UNCLASSIFIED - For Official Use

17 Sustainable Development Goals

Author | ESRIN | 18/10/2016 | Slide 2

+

European Space Agency

SAPIENZA Università di Roma

5 addressed UN SDGs

Large EO Spacecarft VS Small EO Platforms

Author | ESRIN | 18/10/2016 | Slide 7

European Space Agency

= II 🕨 :: = + II = 🔄 = II II = = :: = 🛛 II = :: II 🛞 🛀

ESA UNCLASSIFIED - For Official Use

6U-based Cluster

8 Off-nadir Angles

Redundacy on Nadir view

4 Spectral Bands

Author | ESRIN | 18/10/2016 | Slide 8

Imagery less distorted

Estimation of the size distribution of the aerosol particulates (blue channel – 443 nm)

Broadband-reflecting properties for albedo features estimation (green band – 555 nm)

<u>Vegetated surface identification and marine aerosol studies</u> (bands in the red and near-infrared – 670 and 865 nm)

Maximal sensitivity to off-nadir effects

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 9

Mission Requirements

Spectral Performances	Four spectral bands (R, G, B, and NIR)		
Off-nadir sampling capability	Eight different view-angle forward and afterward the Nadir (±26.1°, ±45.6°, ±60.0°, ±70.5°) with redundancy on Nadir views		
Radiometric performances	High sensitivity is needed for a wide range of scene reflectance (2% to 100%) without any change in gain		
Spatial performances	Sub-km Spatial Resolution		
Stable Pointing	Three-axis stabilization and On-board Orbit Control System		
Cluster Downlink Capacity	The maximum needed data rate is around 50 Mbits/s		

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 10

Orbital Parameters

Orbit	SSO - circular
Semiaxis	6856.99 km
Inclination	97.41 deg
Argument of Perigee	68.13 deg
RAAN	200.00 deg
Shift in True Anomaly	2.32 deg
Mean Local Solar Time at DN	10:30 am
Orbital Period	94.18 min
Eclipse Time	35.12 min

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 12

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 14

2 Main On-board Configurations

Author | ESRIN | 18/10/2016 | Slide 15

ESA UNCLASSIFIED - For Official Use

Configuration A

Author | ESRIN | 18/10/2016 | Slide 16

ESA UNCLASSIFIED - For Official Use

Configuration B

Author | ESRIN | 18/10/2016 | Slide 17

ESA UNCLASSIFIED - For Official Use

Mass Budget

Components	Configuration A	Configuration B	
Aluminium structure	0.9	7 kg	
Optical payload	3.0 kg	2.0 kg	
ARTICA System	0.40 kg		
OCS	0.30 kg		
TLC	0.2	0 kg	
Power Control Unit	0.1	5 kg	
Battery Pack and Aluminium support system	0.60 kg		
OBC	0.40 kg		
ADCS	0.50 kg		
Solar Panels	1.4	kg	
Connections	0.30 kg		
Antenna	0.1	7 kg	
TOTAL MASS	9.40 Kg	8.40 Kg	

1+1

Author | ESRIN | 18/10/2016 | Slide 18

ESA UNCLASSIFIED - For Official Use

- Sub-kilometer spatial resolution
- 8 Off-nadir angles plus redundancy on the Nadir view
- Matrix imagers configuration
- Common focal length (21 mm)
- Pixel dimension of 7µmx7µm
- CMOS sensor (2048x1536 pixels)
- COTS filters (RGB and NIR)
- MISR Optical Quality Factor (Q) \in [0.1,0.25]

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 19

F# = 2

10.5 mm as Sensor Dimension

Author | ESRIN | 18/10/2016 | Slide 20

European Space Agency

esa

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 21

Radiometric Analysis Results

Equivalent	Minimum -	HORUS			
reflectance %	SNR	Blue	Green	Red	NIR
100	700	861.8	868.7	862.9	865
70	600	719.5	725.3	720.4	722.3
50	450	606.4	611.3	607.2	608.7
20	300	378	381	378.5	379.5
2	100	100	101	100	100

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 22

+

Resolution at Ground

		Observing angles				
		0 deg	26.1 deg	45.6 deg	60.0 deg	70.5 deg
Spectral bands	blue (446 nm)	27.2 m	30.2 m	38.8 m	54.4 m	81.4 m
	green (558 nm)	34.0 m	37.8 m	48.6 m	68.0 m	102.0 m
	red (672 nm)	41.0 m	45.6 m	58.6 m	82.0 m	122.8 m
	IR (866 nm)	53.0 m	59.0 m	75.8 m	106.0 m	158.8 m

Main Hypotheses:

- Diffraction limited device
- Aberration free estimation

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 23

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 24

European Space Agency

esa

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 25

European Space Agency

esa

Conclusions

- The HORUS Cluster Mission has been designed at Sapienza Space Systems and Space Surveillance Laboratory (S5Lab) to define a new EO concept able to acquire multi-spectral and multi-angle imagery
- The **design** has been **consolidated** and the **Feasibility Study performed** allowed defining the main features of the spacecraft and on-board payload
- The main requirements and key performance parameters of the mission have been defined by considering the performances offered by the NASA's TERRA satellite
- The Synergy between the HORUS Cluster and already existing EO large/small satellites constellation and spacecraft is currently under evaluation

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 26

→ THE ESA EARTH OBSERVATION Φ-WEEK

EO Open Science and FutureEO

12-16 November 2018 | ESA-ESRIN | Frascati (Rome), Italy

For further details: ali.Pellegrino.92@gmail.com

ESA UNCLASSIFIED - For Official Use

▝▋▶₦■ः▋ॺॺ≝ଵ▋▋∎ଵ₽╬ॿ▋▌■+₽₩≈

European Space Agency

Questions?

NASA's TERRA Satellite

ESA UNCLASSIFIED - For Official Use

- It was launched on on December 18, 1999
- Its size is comparable to a small school bus
- It carries five instruments taking measurements of the Earth system
- Terra has a strong chance of operating successfully into the early 2020

Author | ESRIN | 18/10/2016 | Slide 28

Multi-angle Imaging SpectroRadiometer

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 29

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 30

View of the ash plume from Iceland's Eyjafjallajokull volcano

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 31

Severe Air Pollution in New Delhi

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 32

Global, seasonal summaries of Directional Hemispherical Reflectance (DHR), the "black-sky" albedo

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 33

Estimate of the amounts, types and heights of clouds

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 34

Link Budget

Features	Symbol	Data	Result
RF Output Power	P _t	3 dBW	
Antenna Gain	Gt	0 dBi	1
Free Space Path Loss	L _p	175 dB	
Additional Loss	La	5 dB	
Receiver Antenna Figure of Merit	G/T	30 dBK-1	
Boltzmann's Constant	k	-228.6 dBW/(Hz*K)	
Data Rate	R	70 Mbps	
E _b /N ₀	E _b /N ₀		11.6 dB
E _b /N ₀ Required for BER= 10 ⁻⁵	$E_b/N_{0 min}$	4.4 dB	
Link Margin		$E_b/N_0 - E_b/N_{0 \min}$	7.2 dB

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 35

Average Power	30W
Power peak	~ 41W

- <u>Zenith-pointing face</u>: 6U body-mounted solar panel (triple junction cells) equipped with a double deployable system;
- CubeSat base: 2U body-mounted recovery panels;
- Nadir-pointing 6U face: 2U body-mounted recovery panels

ESA UNCLASSIFIED - For Official Use

Author | ESRIN | 18/10/2016 | Slide 36