Statistical Distillation of the Earth System Data Cube

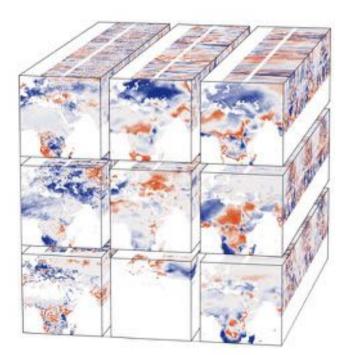
<u>**Gustau Camps-Valls**</u>¹, E. Johnson¹,V. Laparra¹, D. Bueso¹, M. Piles¹ G. Brandt², N. Fomferra², H. Permana², M. Mahecha³

¹Image Processing Lab (IPL) - Univ. València - **http://isp.uv.es** ²Brockmann Consult ³MPI Biogeochemistry - Jena

The Earth as a mathematical object

Earth System Data Cube (ESDC)

- Global extent
- Nested spatial grids (0.083°, 0.25°)
- Convenient aggregation (e.g. national levels)
- Consistent temporal sampling (8-daily, 2001-2011)
- Many variables: T, W, GPP, Precip, ET, ...
- Priority on the ESA data suite



Earth System Data Cube (source: esdc.net)

Earth System Data Cube (ESDC)

- Global extent
- Nested spatial grids (0.083°, 0.25°)
- Convenient aggregation (e.g. national levels)
- Consistent temporal sampling (8-daily, 2001-2011)
- Many variables: T, W, GPP, Precip, ET, ...
- Priority on the ESA data suite
- What's the information content of the cubes?
- Which are the interesting, entropic, variables?
- What are the most interesting time and space scales?



Earth System Data Cube (source: esdc.net)

All is about estimating information, and densities ...

$$\sum_{x} p(x) \log p(x) \sum_{xy} p(x,y) \log p(y|x) \sum_{x} p(x) \log p(x) \sum_{xy} p(x,y) \log p(y|x)$$

$$\sum_{xy} p(x,y) \log p(y|x) \sum_{x} p(x) \log q(x) \int_{\mathcal{X}} p(x) \log(p(x)/q(x)) dx$$

$$\sum_{xy} p(x) \log p(x) \sum_{xy} p(x,y) \log p(y|x) \sum_{x} p(x) \log q(x) \sum_{x} p(x) \left(\frac{\partial p_{\theta}(x)}{\partial \theta}\right)^{2}$$

$$\sum_{x} p(x) \log p(x) \sum_{xy} p(x,y) \log p(y|x) \left(\frac{\partial p_{\theta}(x)}{\partial \theta}\right) \sum_{x} p(x) \left(\frac{\partial p_{\theta}(x)}{\partial \theta}\right)^{2}$$

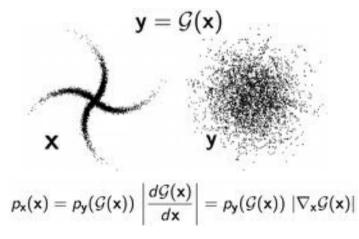
$$\int_{\mathcal{X}} p(x) \log(p(x)/q(x)) dx \sum_{x} p(x) \log p(x) \sum_{xy} p(x,y) \log p(y|x)$$

Estimating densities is challenging ...

- Curse of dimensionality: Multivariate densities are difficult to estimate
- Naive and current methods need millions of points so computationally costly!
- Current approaches are only univariate!

Estimating densities is challenging easy with RBIG ...

- Curse of dimensionality: Multivariate densities are difficult to estimate
- Naive methods need millions of points as dimension increases, so very costly!
- Current approaches are only univariate!
- Multivariate Gaussianization:
 - Transforms the PDF to a multivariate Gaussian
 - Estimate *p(x)*



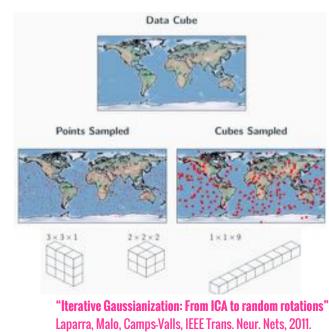
Spatio-temporal information analysis

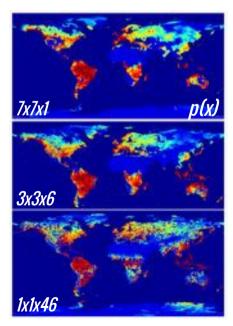
Multivariate Gaussianization method to estimate p(x) and multi-information PDF $p(\mathbf{x})$ RBIG G Data x ⁻C(x)

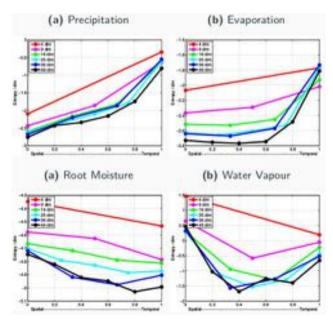
"Iterative Gaussianization: From ICA to random rotations" Laparra, Malo, Camps-Valls, IEEE Trans. Neur. Nets, 2011.

Spatio-temporal information analysis

Multivariate Gaussianization method to estimate p(x) and multi-information







Compressibility and sparsity of the Earth cube

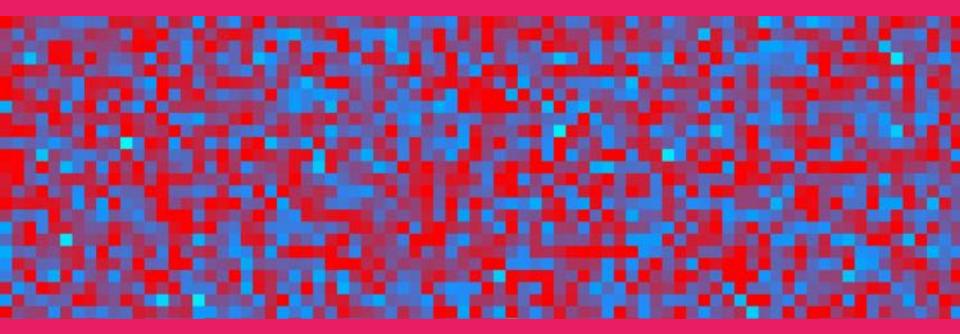


Image compressibility with wavelets

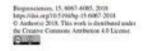
- Wavelets excel at spatial analysis
- Rate-distortion: Sparsity vs Reconstruction error

"On the suitable domain for SVM training in image coding" Camps-Valls, Gutiérrez, Gómez and Malo. JMLR 2008. Check our suite: http://isp.uv.es/software.html "Regression Wavelet Analysis for Loss less Coding of Remote-Sensing Data" Amrani, Serra-Sagrista, Laparra, Marcellin, Malo. IEEE TGARS 2016 **"Parameter Retrieval Largely Benefits from Spatial-Spectral Image Compression"** Garcia, Serra, Laparra, Calbet, Camps-Valls. IEEE TGARS 2017

Image compressibility as anomaly index

Anomaly index = Sparsity/Error

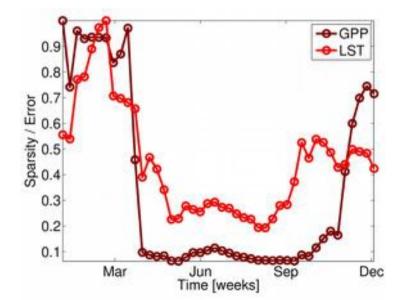
"Something interesting is going on if you cannot achieve sparsity and fixing the error"



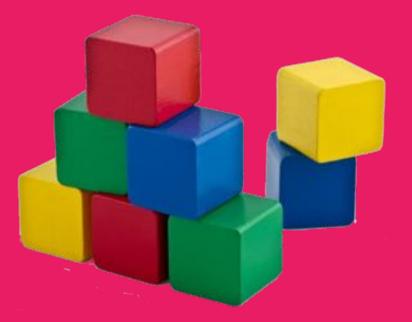
Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave

Milan Fisch', Scharitan Sippel², Fabian Gam⁴, Ana Barire³, Alexander Brenzing⁴³, Markus Reichstein¹³, and Migwel D. Maitecha¹³

¹Max Planck Institute for Biogeneterosity, Department of Biogeneterosis Integration, PO, Bios 100 60 del (20170 June, Ceremany "Distringual Institute of Bioconseria, Research, As, Norway ¹Ladelay Maximilian University, Department of Geography, Maxidt, Germany ¹Foodsteh, Schiller University Iena, Department of Geography, Juna Germany ¹Subdate Studied Center Jena for Data-driven and Simulation Kisener, Jena, Germany



Extracting components from spatial-temporal data

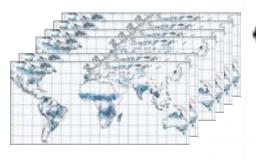


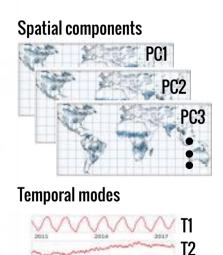
Spatio-temporal analysis of the Earth cubes

• **PCA/EOF** is popular, yet cannot cope with nonlinear spatio-temporal relations

• ROCK PCA

- copes with nonlinearities
- extracts spatial and temporal components
- as many as components as pixels
- very fast and parallel versions



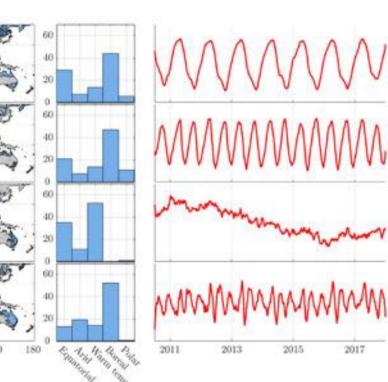


Spatio-temporal analysis of the Earth cubes

PC3(10.2%

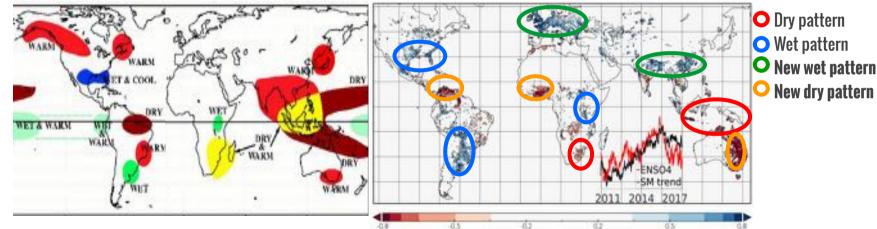
PC4(4.3%)

- SM decomposition
 - Meaningful compression
 - Climate-specific modes of variability
 - Boreal and Equatorial modes of SM variability dominate
 - Seasonal and ENSO related temporal modes



Spatio-temporal analysis of the Earth cubes

PC3 highly correlates with ENSO + new spatial patterns uncovered



 Nonlinear cross-correlation uncovers unreported SM-ENSO lags

"Rotated Complex Kernel PCA for spatio-temporal data decomposition" Bueso, Piles, Camps-Valls, IEEE TGARS, 2018

	ENSO 1.2	ENSO 3	ENSO 3.4	ENSO 4
Lag [days]	60	30	25	5
Max Corr	0.56	0.68	0.66	0.8

Conclusions

Conclusions

- Earth data cubes pose great opportunities
 - \bigcirc Research
 - \bigcirc Applications
- Information theoretic approaches
 - \bigcirc Density estimation and multi-information
 - \bigcirc Compression and sparsity
- New machine learning methods
 - Multivariate data
 - Multisource data
 - Structured spatio-temporal relations
 - Nonlinear features
 - Discover new patterns

