

A Walk-Through on Machine Learning Techniques for Sentinel Big Data Fusion

Sara Aparício ESA ESRIN, EOP-Φ

Φ-Week - 12th November 2018

@_SaraAparicio

*

The world's most comprehensive suite of dedicated EO missions.

EO OPEN SCIENCE

Major trends

- a) The advent of cloud computing & increase computing power,
- b) proliferation of open-access satellite data streams,
- c) growing use of machine-learning algorithms

Sentinel data fusion with Machine Learning Techniques CSA

Multisensor/multitemporal data

Best technique? Best band selection?

= II 🛌 :: = + II = 🚝 = II II = = : :: 🖬 🛶 💷 II = : : II 🛞 🖕 🕨

Motivation I – Merging different datatypes

A promising direction of machine learning in Earth Observation is its pairing with data fusion

ESA UNCLASSIFIED - For Official Use

. = •• ⊾ = = + • • • = ≡ Sentinci-2 = = •• • • = • ••

Motivation 2 – AI4EO the white paper

Cesa This document addresses elements of what needs to be done at European level, some Classification/ Recognition Towards a Enropean AI for Earth Observation potential of artificial if - updating land-cover maps Research & Innovation Agenda Proceedings of a workshop at ESA & lab ata and the data ppy chain and vice versa. It captures the recommendations of a community-led AI4EO workshop held at ESA/ES Detection list in Annex 1). The aim - large scale in automatic basis seess progress in the de-use SAR in machine learning techniques to the way of EO and to explore the potential value of a concerted Research and Innovation (R&I) effort on this topic at **European Data Fusion** e a *dynamic* report captur - Merging diverse EO data community. It will be rev workshop at ESA/ESRIN on November 14th, 2018......(....)

Objectives/Goal

- To develop a pixel-based classification, reproducible, scalable with a machine learning-based approach of large-area mapping/land cover of high resolution (10m) based on a multi-sensor & multi-temporal approach;
- 2. To evaluate the **additive value** of open-access satellite optical and radar variables, processed using cloud computing, to a topographic baseline model.
- To explore/understanding/address efficiency of Google Earth Engine to effectively execute big data workflows using machine learning techniques on Google Earth Engine (and accuracy) for multi-temporal land use mapping.

= II 🖕 II = + II = 🚝 = II II = = II 🖬 🛶 🔯 II = II 🛞 🛶 🕨

METHODOLOGY

Case study

West Wieljopolska

Landcover classes Agriculture, Coniferous forest, Mixed Forest, Grassland, Bare soil, Wetland, Urban fabric, Water body.

(Sentinel-2 Natural Color)

Workflow – data processing & preparation

Workflow – input data

Workflow – classification

_ II 🖕 II 🖛 + II 🗮 🚝 _ II II = 二 II 🖬 🛶 🔯 II = II 🕮 📾 🕷

RESULTS OVERVIEW

Classifier - CART Bands - VV μ (lee)

Classifier - CART Bands - B4 B8 B11

Classifier - RF Bands - S1 + S2 bands **Classifier - RF** Bands – All except... Classifier - RF Bands - All S2 bands Classifier - RF Bands - B4 B8 B11 **Classifier - RF** Bands - NDVI NDWI

Behaviour to data input Averaged from best performing models

Improving model performances...

Best performing models with S1+S2 variations

Random Forest (Tuned) CART Support Vector Machines Random Forest

Further accuracy metrics...

	Reference										
Classified	Water body	Wetland	Urban Fabric	Agriculture	Coniferous Forest	Mixed Forest	Grassland	Bare soil	PA	UA	Kappa 0.9881
Water body	193	0	0	0	0	0	0	0	1.000	1.00	
Wetland	0	29	0	1	0	0	0	0	0.967	0.94	
Urban Fabric	0	0	239	2	0	0	0	0	0.992	1.00	
Agriculture	0	1	0	428	0	1	0	0	0.995	0.99	
Coniferous Forest	0	0	0	0	154	2	0	0	0.987	0.99	
Mixed Forest	0	0	0	0	2	157	0	0	0.987	0.98	
Grassland	0	1	0	1	0	1	60	0	0.952	1.00	0.9906
Bare soil	0	0	0	0	0	0	0	5	1.000	1.00	

Ground Truth/Reference VS Final model

= II 🛌 == + II == 🚝 == II II == = = 🖽 🛶 🔯 II = = 🖼 🕮 🗯 🛶 🙌

Isolated strucutre

Road construction

Wetland & Grassland

Crop transition

Line of trees

Limitations...bear in mind that....

So.... Is this then the best model?

• Training data (plays a **huge** role) affecting:

Models performances

Smaller size – the more data input...not always is the best

Bigger size – more difference in 'additive power' but models behaved + similarly

• Tuning hyperparameters of ML are **done manually**

Some models were inserted by default & data was not normalized

What potential...?

Example of straightforward applications...

• Analysis of temporal land use and land cover change...

__ II ⊾ :: = + II = ≝ __ II II = Ξ __ :: u II = II = ₩ ...

Larger scale + less classes

Mapping water bodies

Larger scale + less classes

Mapping forest cover

Elevation (DEM STRM)

Large scale + data input + classes

CORIN LAND COVER (100m)

S1 +S2 = + accurate + frequent + higher resolution

Overall Conclusions

Google Earth Engine

- GEE offers **powerful** capabilities in **handling large volumes** of remote sensing imagery
- GEE contains state-of-art machine learning algorithms achieving high accuracies and excellent tool for rapidly prototype AI applications.
- A big limitation is the need of manually tune the machine learning algorithms

Added value of fusing Sentinel data

- The integration of texture and spectral information for pixel-based classification improves classification accuracy (S2 outperforms S1 alone but together detect finer structures).
- Data: the more, the merrier!

Large scale mapping – further work?

- Results can be used to calculate/estimate use cover and land change dynamics
- Normalize data and test more combinations!

Thank you for your attention!

