

AI4EO Challenges in the context of the Great Green Wall Initiative

Anders Ueland Waldeland⁽¹⁾, Arnt B. Salberg⁽¹⁾, and Alessandro Marin⁽²⁾

(1) Norwegian Computing Center, (2) ESA/ESRIN

Φ-week, ESRIN, November 13, 2018

Great Green Wall Initiative

The GGW is a plan to build wall of trees across the African continent – from Senegal in the west to Djibouti in the east.

The GGW will act as a barrier to prevent spread of the desert.

Great Green Wall Initiative

Goal

Explore if deep learning techniques applied to time series of Sentienel-2 data can detect and map dry forest in the Sahel regions

Deep Learning learns end-to-end

Realized using deep neural networks

Training data

We did not have annotated data available from the Sahel region

But we had lidar data from Liwale, Tanzania (2014)

From the lidar data we processed the **average tree height** [m] per Sentinel-2 pixel

Training data

Corresponding Sentinel-2 data:

- Training tiles: T37LCK + T37LDK
- Validation tile: T37LDJ
- Test tile: T37LCJ
- Test data from the Burkina Faso
- Tiles: T30PWT + T30PXT

Top of the atmosphere reflectance and 10 bands (10m & 20m)

Cloud detection using S2Cloudless

Deep convolutional neural network

10 bands

Tree height or forest extent

Network: U-Net (Ronneberger et al.)

Training the deep neural network

Training the deep neural network

Training the deep neural network

Merging multiple predictions

Results – Forest extent mapping, Liwale

Mean tile NDVI > 0.6 Test tile: T37LCJ

Configurations

- UNet
- Adam optimizer, LR=0.0004
- Median frequency balancing

test_set_acc_class_1

test_set_acc

Results – Forest extent mapping, Liwale

Mean tile NDVI: [0.4 – 0.5] Test tile: T37LCJ

Configurations

- UNet
- Adam optimizer, LR=0.0004 ٠
- Median frequency balancing ٠

test_acc_class_1 70.0

test_acc

Results – Forest extent mapping, Liwale

Tile: T37LCJ

Results – Forest extent mapping, Sahel

Results – Three height prediction, Liwale

Test tile: T37LCJ

Configurations

- Mean tile NDVI > 0.6
- UNet
- Adam optimizer, LR=0.0004
- Balanced histogram sampling

Results – Three height prediction, Liwale

Tile: T37LCJ

Conclusions

- The deep learning based valid chain is flexible. The same chain is used for both forest extent mapping and tree height estimation.
- The results depends strongly on the greenness of the vegetation. Tiles with high mean NDVI values gave better results than tiles with low NDVI values.
- The results of the tree height prediction is in general good, but the algorithm struggles to predict tree heights above 15m
- ► The results for Burkina Faso (Sahel) need to be evaluated properly.
- Further studies will be to investigate multi-sensor approaches (include Setinel-1) and surface reflectance data

