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Building segmentation with deep learning

June 28th 2018: Bing releases 125 million Building Footprints in the US as
Open Data
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Building segmentation with deep learning

June 28th 2018: Bing releases 125 million Building Footprints in the US as
Open Data
How?

Apply ResNet [He et al., 2015] + smart postprocessing
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Building segmentation with deep learning

June 28th 2018: Bing releases 125 million Building Footprints in the US as
Open Data

IGARSS 2018: Large-scale semantic classification: outcome of the first year
of Inria aerial image labeling benchmark [Huang et al., 2018]

13/11/2018 2/15 Sylvain LOBRY, et. al. Deep learning for urban remote sensing



Building segmentation with deep learning

June 28th 2018: Bing releases 125 million Building Footprints in the US as
Open Data

IGARSS 2018: Large-scale semantic classification: outcome of the first year
of Inria aerial image labeling benchmark [Huang et al., 2018]
Winner:

Apply U-Net [Ronneberger et al., 2015] with a modified inference method
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Question

Is it always sufficient to apply off the shelf methods?
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Semantic segmentation vs Instance segmentation
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Semantic segmentation vs Instance segmentation

Semantic segmentation

Many off the shelf algorithms
No info about structure
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Semantic segmentation vs Instance segmentation

Semantic instances segmentation

Can encode geometry priors
Can export GIS footprints
No off the shelf algorithm
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Segmenting building

Segmenting buildings

Based on:

Learning deep structured active contours end-to-end
Diego Marcos, Devis Tuia, Benjamin Kellenberger, Lisa Zhang, Min Bai,

Renjie Liao, Raquel Urtasun
in CVPR 2018
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Segmenting building

Semantic instances segmentation

In the 80’s: people used Active Contour Models
Example of snakes [Kass et al., 1988]:

A contour = set of points

Model enforce:
A data term (e.g. gradients)

Penalization of length

Penalization of curvature

Balloon term

Each term is balanced
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Segmenting building

Tuning ACM parameters

Should we penalize more length and curve?
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Segmenting building

Tuning ACM parameters
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Segmenting building

Tuning ACM parameters

What about the other buildings?
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Segmenting building

Tuning ACM parameters

Input image CNN Data term Penalizecurvature Balloon term
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Segmenting building

Tuning ACM parameters

Input image CNN Data term Penalizecurvature Balloon term

Snake model
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Segmenting building

Tuning ACM parameters

Input image CNN Data term Penalizecurvature Balloon term

Snake model

Ground truth
Loss

Back
propa

gation
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Segmenting building

Results and conclusion

In a nutshell: learning the ACM parameters leading to desired
convergence
Comparison on the TorontoCity dataset [Wang et al., 2016] (over
12000 building instances):

Method WeighCov PolySim
ResNet [He et al., 2015] 0.40 0.29

Deep Watershed [Bai and Urtasun, 2016] 0.52 0.24
Proposed model 0.58 0.27

WeighCov: IoU-based weighted coverage
PolySim: shape similarity
(see [Wang et al., 2016])
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Correcting building annotations

Correcting building annotations

Based on:

Correcting rural building annotations in OpenStreetMap using
convolutional neural networks

John Edgar Vargas Muñoz, Sylvain Lobry, Alexandre Xavier Falcão, Devis Tuia

in ISPRS Journal of Photogrammetry and Remote Sensing (in press)
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Correcting building annotations

Problem

Building annotations can be:
1. Misaligned (because imagery has changed)
2. Missing
3. There, but building has disappeared
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Correcting building annotations

Problem

Building annotations can be:
1. Misaligned (because imagery has changed)
2. Missing
3. There, but building has disappeared

Question

Can we correct these annotations instead

of starting from scratch?
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Correcting building annotations

Solution: Aligning

MLP

Input image Convolutional layers Hypercolumns Probability map

Upsampling
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Correcting building annotations
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Correcting building annotations

Solution: Aligning

MLP

Annotations
Use a Markov Random Field which:

Maximize the correlation between annotations and
probability map
Enforce alignment vectors to be similar
(in a group of buildings)
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Correcting building annotations

Results

Input Semantic segmentation Proposed method

Method F-score
Semantic segmentation [Maggiori et al., 2017] 0.657

Proposed method 0.725

F-score: harmonic mean of precision and recall
(higher is better)
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Correcting building annotations

Results

Input Semantic segmentation Proposed method

Conclusion

It is better to use (potentially inaccurate) OpenStreetMap data than
starting from scratch
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How to characterize buildings

Land use classification

Based on:

Understanding urban landuse from above and ground perspectives:
a deep learning, multimodal solution.

Shivangi Srivastava, John Edgar Vargas Muñoz, Devis Tuia

in Remote Sensing of Environment (under review)
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How to characterize buildings

Land use classification

Based on:

Understanding urban landuse from above and ground perspectives:
a deep learning, multimodal solution.

Shivangi Srivastava, John Edgar Vargas Muñoz, Devis Tuia

in Remote Sensing of Environment (under review)

Government buildingEducational institute
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How to characterize buildings

Land use classification

Problem

Using overhead imagery alone is not enough!

�! Use ground-based pictures (e.g. Google Street View)
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How to characterize buildings

Land use classification
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How to characterize buildings

Land use classification
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Conclusion

Conclusion

Conclusion

Applying off the shelf methods from computer vision to

remote sensing data works but, as a community, we can do

better

We do not always have the same problems
Using priors
Using auxiliary data
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Conclusion

Thank you!

The team:

Devis Sylvain Benjamin Diego John Shivangi

Tuia Lobry Kellenberger Marcos Vargas Srivastava

Supported by:

http://www.sylvainlobry.com/phi-week-2018/
work@sylvainlobry.com
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