Machine Learning-aided Disaster Response

Multi³Net: Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery

Ben Bischke Jakub Fil Ramona Pelich Tim G. J. Rudner Marc Rußwurm

mana and a start of the second s

Natural disasters by cause

Economist.com

2016 and 2017 were one of the most impact-full hurricane seasons with

Hurricanes Mathew, Harvey, Irma, and Maria

devastating the Caribbean islands and causing **subsequent floods**.

First-responders are often **restricted** by **lack of information** about

the location of **affected communities** and the **level of damage**

After such disaster events, first responders

initially prioritize

access to information over map accuracy.

manuana Multi³Net

Key idea

Fast, high-accuracy **building** and **damage detection** by fusion of **multiresolution**, **multisensor**, and **multitemporal** satellite imagery in CNN.

Input data sources:

- Radar: Sentinel-1 (public)
- Optical: Sentinel-2 (public)
- Very high resolution (commercial)

manual sector in the sector of the sector of

0.5m post-disaster

10m pre/post-disaster

10m pre/post-disaster

Very high-resolution optical Medium-resolution optical

Medium-resolution radar

Input data: Multiresolution satellite imagery

0.5m post-disaster

10m pre/post-disaster

10m pre/post-disaster

Very high-resolution optical Medium-resolution optical

Medium-resolution radar

mencioneration Ground truth data: towards two objectives

Building footprints

management and Qualitative results: Houston—Flood Damage

sa

Qualitative results: Ecuador—Hurricane Damage

final prediction overlay

NIPS Conference December 2–8, 2018 in Montreal, Canada

Workshops on

- Modeling and Decision-making in the Spatiotemporal Domain
- Al for Social Good

AAAI Conference January 27–February 1, 2019 in Honolulu, Hawaii, USA

 Multi³ Net: Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery

FRONTIER DEVELOPMENT LAB | 1011

Thank you!

If you'd like to learn more, come join us for our presentation today at 2:00pm at Φ-Lab.

EARTH OBSERVATION

m∎m

