High Perf - Low SWaP EO Payloads for SmallSats A SAFRAN 'New Space' Initiative

SEEING

Small satEllite instrument for Earth ImagiNG

Roland GEYL VP Business Development Expert High Performance Optics Safran Reosc

Who we are – Assets & Capabilities

Safran Reosc

EU leader in space optics

Serving Agencies & Primes worldwide

Telescopes & Lens assemblies

LW	m	irrors
Foc	al	plane
OG	SE	-

- : glass-metal-SiC
- ne : Filters & cryo assemblies
 - : Flats & Collimators

Safran Electronics & Defense

Leader in optronics, space electronics & critical software

EU #1 in Defence optronics

Submarine

Land

Air

Space Electronics & Hybrids

Marine

Critical software

Changing our business model

Our target niche for smallsat EO payloads

New Space expectations

Highest resolution Pixels, FoV, MTF, SNR Low SWaP factor Thermal stability & Mech. strength On-board data processing, AI,

HAPS & other platforms

Risk ? or Opportunity !

Orbit & target application

500 km orbit for lifetime

Low total EO service cost over 5 years

One 5-year satellite cheaper than five 1-year satellites !

Target Application

Opportunity for µsats with Hi-Tech COTS EO payloads: 1 to 10-m GSD

Pan to 8 spectral bands

SEEING 1.5-m payload Ultra low SWaP - High perf - Modular - Evolutive

SEEING 1.5-m: High resolution – Wide FoV

Optics	Ø 190 mm F/9
Image quality	Diffraction limited
Sensor	35 mm full frame 6600x4400 pixels (5,5 μm)
FoV	10 x 6.7 km²
GSD	1.52-m from 500 km

Ikonos 1-m GSD image

Under good conditions 0,76-m GSD is reachable from 500 km orbit with super-resolution processing

SEEING 1.5-m: State of the art MTF & SNR

Comparable to Pleiades specs !

MTF > 0,08 SNR > 90

Solid SNR

					F	anc	hro					
400	450	500	530	600	650	700	750	800	850	900	950	2000
					MS	6 4 b	ands	;				
400	450	500	550	600	650	700	750	808	850	900	950	1000
					MS	5 8 b	ands	;				
400	450	500	530	600	650	700	750	808	850	900	950	\$000

SNR computations with MODTRAN

For same GSD of 1.5-mPanchroSNR = 136 to 141MS 5 bandsSNR = 91 to 141MS 10 bandsSNR = 60 to 106Nota:Doubling GSD will double SNR

Superior filter technology

Conventional Bayer filter technology

Variable Fabry Perot filters Deposited on detector 2D patterning

REOSC 2D structured filters

Bandpass MLD filters Deposited in various steps On various 2D patterns

Thermal Management & Robustness

Smaller satellite ⇒ Higher thermal loads & gradients

Top choice 1 : Mono-material pure mirror design

Perfect homothetic scaling with temperature Stable focus & image quality

JWST NIRSpec CAM

Top choice 2 : Ceramics better than metal

High mech. stability & strength High thermal stability

All ceramic – All mirror design

Then : Easy thermal management

No or low power active thermal control

And : Compatible with Deep Space

Opening to science applications e.g. Rosetta NAC

Disruptive features for disruptive value creation

Ultra-Low Size Weight and Power (SWaP) factor

 Mass
 6 kg

 Volume
 20x20x20 cm³ = 8U

 Power
 15-30 W

others are 18 kg others are 80 liters

New manufacturing technologies

Disruptive optical manufacturing & AIT technologies Designed for Additive Manufacturing

Shorter production schedule

Highly contributive to the global value model

5 year lifetime @ 500 km orbit 10X lower volume 3X lower mass

11

=> Lower long term service cost

=> Lower system cost

=> Lower system cost

Smallsat platform + SAFRAN's Disruptive payload = Highest value

Modular & Evolutive

New sensors technology

35 mm Full Frame sensor Evolution to 50 Mpixels & new technologies

More complex filter

More bands or 2D structuration Linear variable filter ?

UV or IR channel addition

All-mirror design allows adding a 2nd channel Replace a folding mirror by a dichroic and add a final eyepiece module for : Pupil relay to cryostat (IR) EFL adaptation

Implementation possible into smallest cubesats

12 U

16 U

Data processing

SAFRAN assets

Broad catalog of real-time video processing algorithms with related ASIC and electronics. Fast, compact, efficient, optimised for 2D images « battle proven »

Onboard

Data volume reduction & pre-processing

- Image compression
- Cloud, sea or land removal
- Target detection (ship, iceberg, oil spill,)

On-ground

Basic processing

- MTF enhancement by deconvolution denoising
- Motion or jitter compensation
- Super-resolution
- Local contrast enhancement
- Etc

Sentinel-II image: Ships auto detection (re-use of tank & aircraft detection algorithms)

Another advanced payload: SEEING 10-m Ultra low SWAP – Wide FoV – High sensitivity - Modular - Evolutive

High NA & Very compact 6.3° x 4.3° Diffraction limited 475 – 900 nm Very low distortion

Same modular & compact spirit but

Wide FoV
Small volume
GSD
MTF budget
SNR

60 x 40 km from 600 km orbit 180x180x200 mm³ (+ baffle) 10-m > 0,15 > 400 (PAN) > 256 (MS)

The plus : High sensitivity in twilight conditions

SEEING: SAFRAN's multipurpose disruptive EO payloads

SAFRAN top optics & optronics skills

Self funded – Exchanges with Cnes & Nexeya - Demonstrator in 2019

Hi-perf & robust to any mission profiles

Diffraction limited – Efficient filters – Ceramic structure Modular & evolutive Additional channel possible

High value generation

Long life @ 500 km orbit Low mass – Lowest volume – Fits in 12U cubesats Stacking options

SAFRAN's Electronics & Software

Ex: sub-meter GSD with super-resolution processing

Multipurpose : EO, science, debris tracking, tactical, HAPS,

Need a compact hi-perf space imager ?

roland.geyl@safrangroup.com