Artificial Intelligence for Space Operations

Alessandro Donati & al. AI & Operations Innovation team @ ESOC Phi-Week, ESRIN 12-16 Nov 2018

What is Space Operations?

Similar to your daily routine

Keep you healthy

Be "productive" in your life

Slide 2

What is Space Operations ?

Health Caring of Spacecraft

Productive Chain: Plan + Execute + Get Payload Data & Disseminate

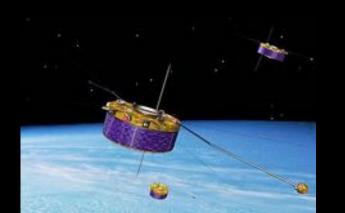
Slide 3

What is Space Operations ?

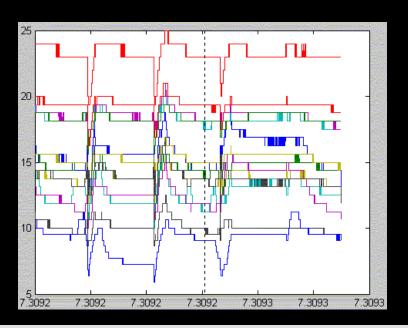
Health Caring of Spacecraft

Productive Chain: Plan + Execute + Get Payload Data & Disseminate

Planning Execution Monitoring Forecasting Diagnostic

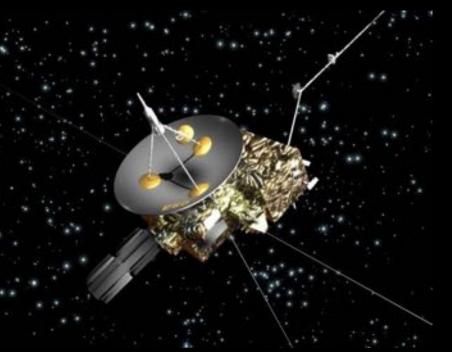

Slide 4

Al in Space Operations: First Steps


2002 Intuition

Space Operations @ ESOC is rich in data

We can **do more** with these data.. If we have **easy access**.


Thermal Virtual Sensor with Artificial Neural Network

Slide 5

Early Al Applications in Operations: Fuzzy Logic for Decision Support

Ulysses Nutation Anomaly Management Tool deployed @ JPL

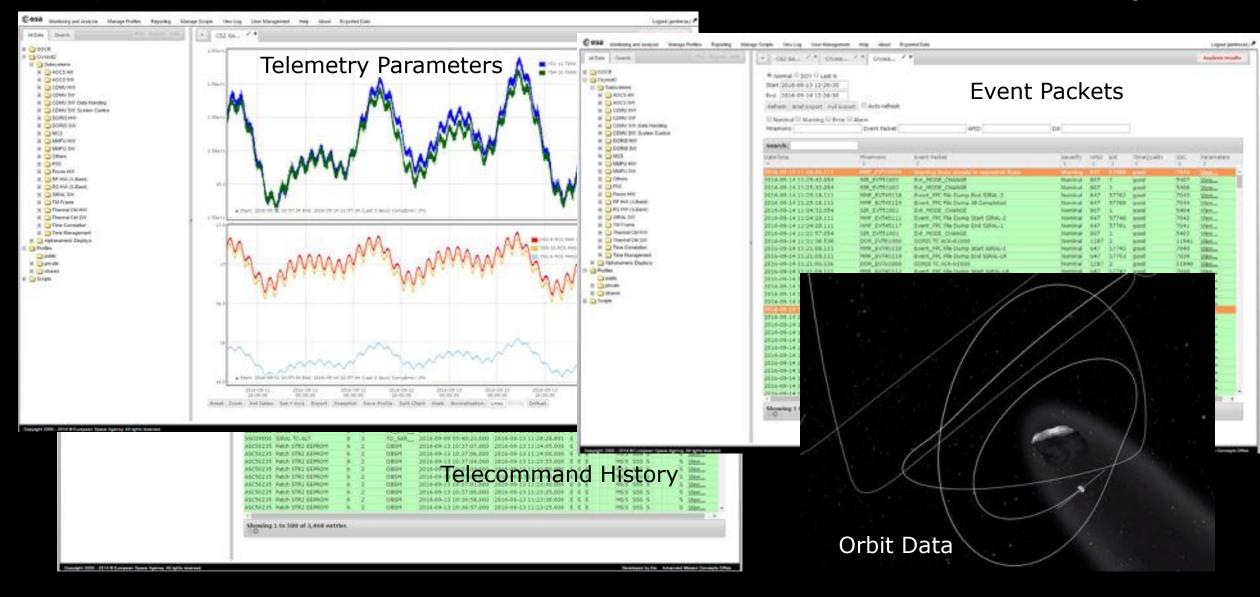
ENVISAT Gyroscopes Health Monitoring Tool deployed @ ESOC

AI in Operations

How to generate optimal plans and get more science How to predict what is going to happen How to detect novel behaviour How to improve diagnostics How to learn from the past to better design the future Ball no

Enabling Autonomous Operations

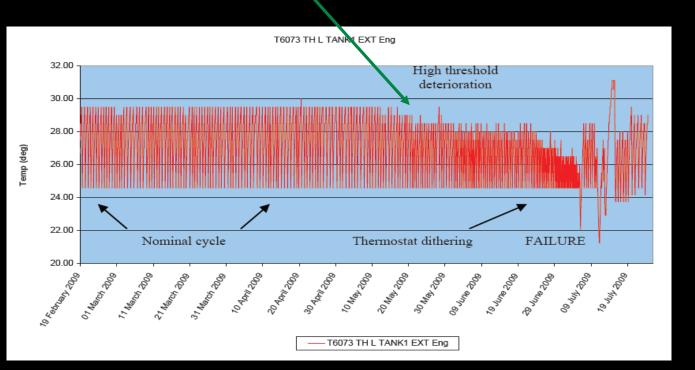
Artificial Intelligence & Operations Innovation core team @ ESOC



Redouane Boumghar, Jose Martinez-Heras, Jose Da Silva, Alessandro Donati, Simone Fratini, Nicola Policella

Slide 8

Ecosystem for easy access to operational data: MUST & ARES



Slide 9

How do we detect novel behaviour ahead of failures?

Predictive Maintenance: use ML and Novelty Detection to find potential anomalies before they become serious.

How do we generate optimal plans ?

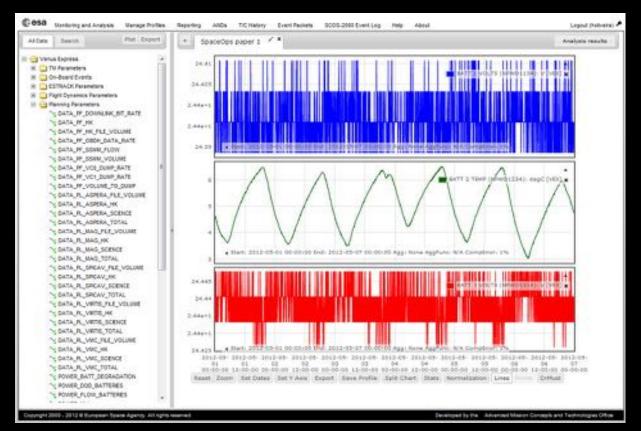
Autonomous coordination and planning of payload experiments :

- Operations of 4 ESA Technology Payload on Alphasat

- AI planning & AI monitoring technology

How do we predict the consumption of MEX thermal subsystem next year ?

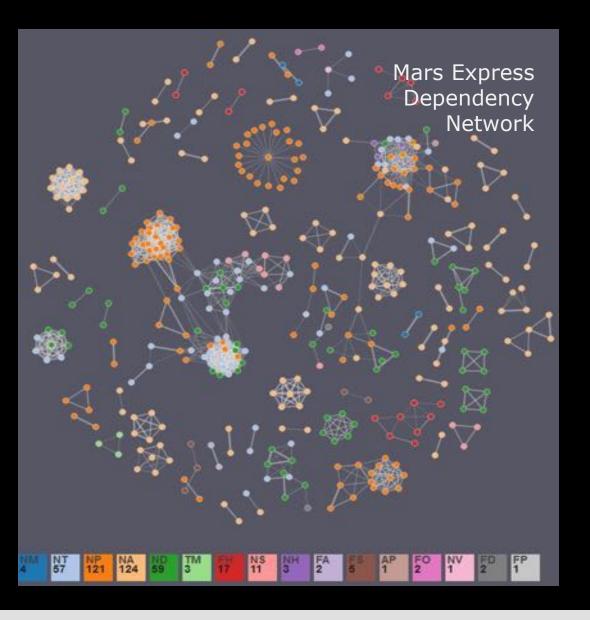
Added value: Accurate power consumption prediction enables more resources for science



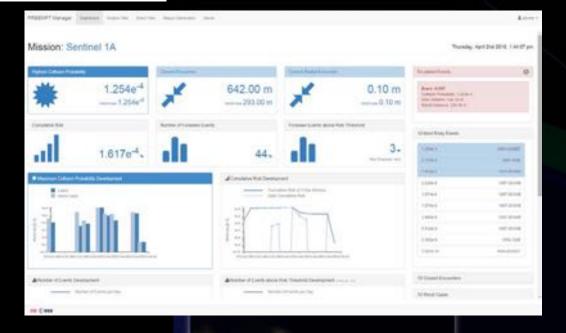
Winning team from Jožef Stefan Institute in Ljubljana, Slovenia

How do we learn from the from the past to better design the future?

TEC-MUST, a data analytics platform and service to support inter-directorate:


- Multi-Spacecraft performance assessment
- Collaborative diagnostics
- Design models fine tunes
- Close-loop btw development and operations

Dependency Finder plus Visual Analytics



165		113			E.	(C)		1		
			12.1		11					
			a.	1.000	1.1	-	-	-		22
							10	N.	64 - 1 64 - 1	1.
-		110	1.3		1	1.2.2	64		1	1.4
		-	1	1111	-		3	1	-	-
			۰			5				
				25	N			- 35		
			1.12	in all		-	-			
		11	0123	Ret:	-			ē 1.11	***	
Ŧ	(d)		112	10 A 10	81					4
	The second	π ¹ .	٠.	Handlin :	8	1			-	-
		11 12	u ²¹	11112	12	100		1	12	-
			10	THE PARTY	1II			莆	12	
1	Comment		1	1						
i manager of					1100000			· · · ·		
		10	1	in units	1	14		140	1	100
		111111	LANDA.		1112253	1110000			1 de la	Sec.
							i.			

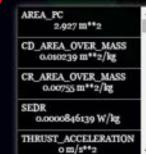
Spotting of unexpected coupling:

- update of ops procedure
- feedback to design

use mouse to look apound and wheel to zoom in/out press 'q' to cycle through camera views

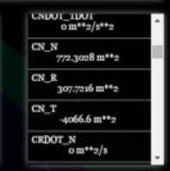
COLLISION_PROBABILITY	0.0001575
COLLISION_PROBABILITY_METHOD	KLINKRAD
MAX_COLLISION_PROBABILITY	0.0002982
MISS_DISTANCE	292 m
RELATIVE_SPEED	14910 m/s
TCA	2015-01-17T06:08:22+00:00
SCREEN_ENTRY_TIME	2015-05-07Th2:52:11+00:00
SCREEN_EXIT_TIME	2015-05-07T12:52:11+00:00
START_SCREEN_PERIOD	2015-05-07T12:52:11+00:00
STOP_SCREEN_PERIOD	2015-05-07T12:52:11+00:00

CRYOSAT 2: 36508


How to identify critical conjunctions autonomously?

08:18

08:19


e.g. Oneweb:

- 720 spacecraft
- Up to 100 collision alerts per spacecraft every day
- 30 parameters per alert to be analysed by human experts
- => more than a million data points to be considered for collision avoidance action day and night!
- => planned ARTES study on autonomous decision taking

08:27

08:26

2015-01-17T06:08:22+00:00

08:23

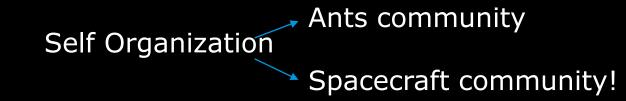
08:24

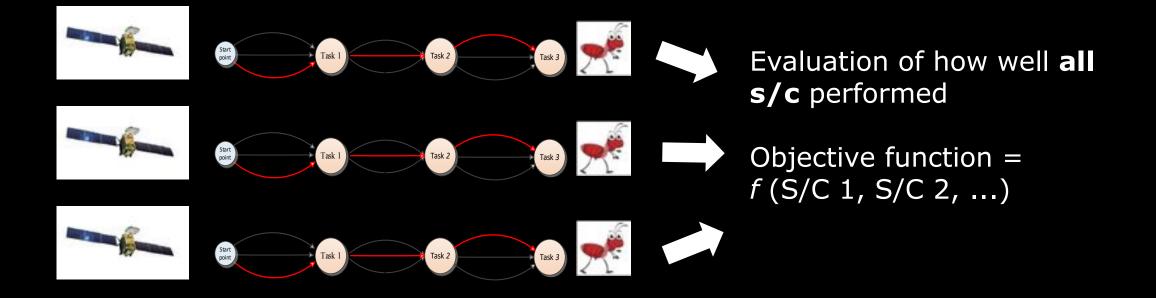
08:25

08:22

08:21

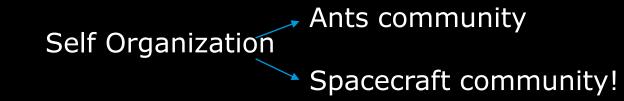
REEMPT vo.1.0

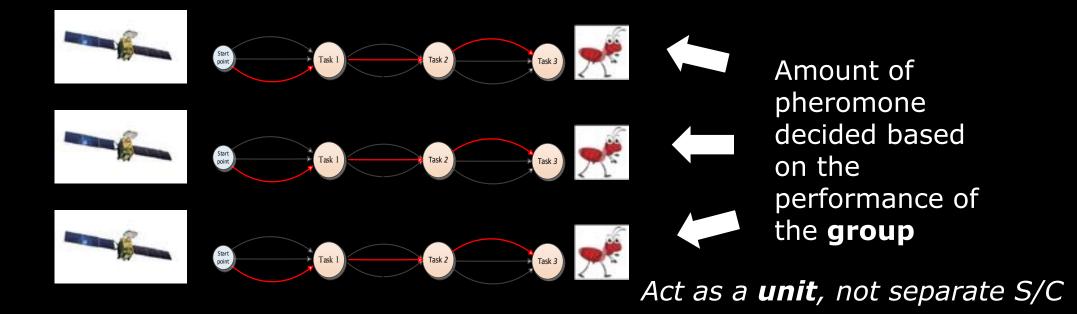

European Space Agency


0 Q 7 m #

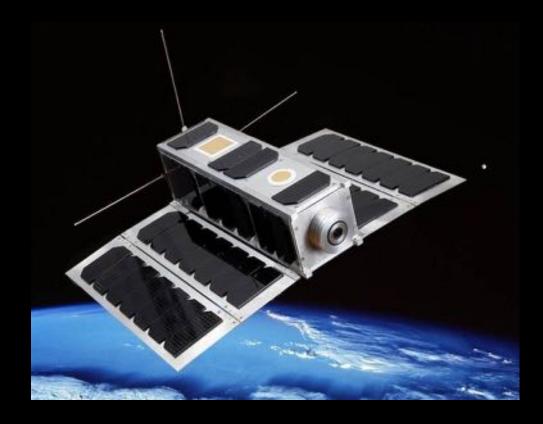
Al Planning & Scheduling: Self-organizing EO Constellation using Ant Colony Optimization Paradigm

Coordination mechanism: 3 DMC3 spacecraft, **Multiple** GEO spacecraft





Al Planning & Scheduling: Self-organizing EO Constellation using Ant Colony Optimization Paradigm


Coordination mechanism: 3 DMC3 spacecraft, **Multiple** GEO spacecraft

OPS-SAT experiment: AI for Autonomy Operations

Demonstrate the capability and maturity of AI planning and scheduling

- to autonomously schedule and reschedule onboard activities
- based on
 - awareness of current situation
 - on pre-loaded operations goals

Built on "Advanced Planning Scheduling Initiative" (APSI) ESA Open Source Platform

Random Forests to predict the ESA News #views

http://www.esa.int/Our_Activities/Space_News

Random Forest provides accurate predictions

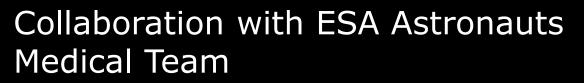
but ...

The ESOC Communication Office is looking forward to **understanding** what engages the public

Dissemination of Experience: Machine Learning Lectures

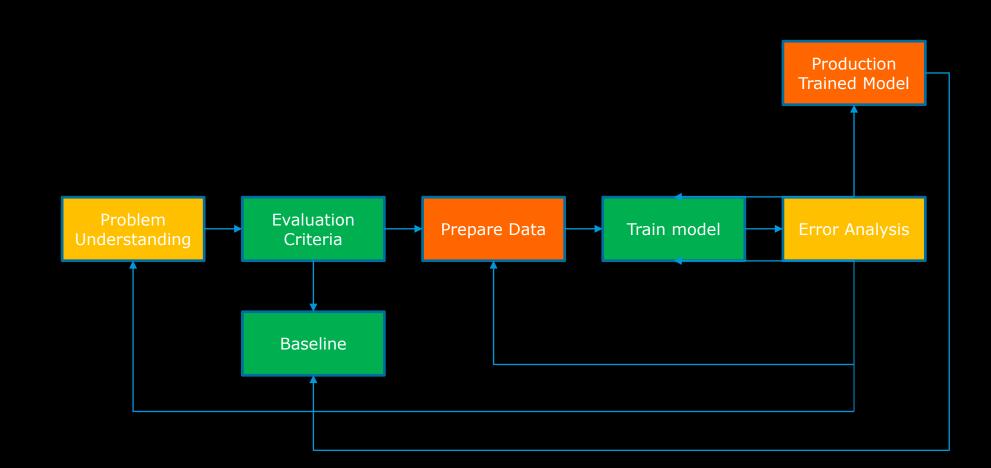
https://github.com/jmartinezheras/2018-MachineLearning-Lectures-ESA

Slide 20


Spin-off of AI in Operations

Health Caring of Spacecraft

Health Caring of Humans



Collaboration with Merck

Machine Learning Workflow: where the effort goes

Slide 22

AI for Space Operations: Way forward

esa

- Share experiences to help & sustain AI potential exploitation in
 - Spacecraft operation
 - Spacecraft design
 - Payload products & services

- Next Themes for Space Operations:
 - Explainable AI
 - AI for Autonomy
 - On ground (e.g. ground stations)
 - Space + Ground (one entity)

Artificial Intelligence in Operations

Spin-off: dissemination, consultancy

D/OPS experience & perspectives

15 served missions, incl. Galileo

10 Al applications in operations, incl. 2 patents and 1 invention 4 in-house Al specialists with deep operations knowledge

ŤŤŤŤŤ

Cooperation with other directorates, national & int. space agencies & int. organizations

Networking and support with Academia and Industry to spread Al for space applications

Al for Space Operations and more - Take Away

- Al is now an integrated part of Space Operations
- From ground to onboard as a new space-ground unified asset
- Collaborative AI is becoming a field for Data Scientists across
 Spacecraft & Mission lifecycle (concept, design, production, operations, dissemination)
- Easy access to "good" data is imperative

Thank you for your time alessandro.donati@esa.int

