

EO Technology at ESA: Processes, achievements and future trends

Φ-week - Future EO (part 5) session

by Josep.Rosello @ esa.int Technology Coord. & Frequency Mngt Section (EOP-ΦMT) EO Future Missions & Instrument Division (EOP-ΦM) (15-Nov-2018)

ESA UNCLASSIFIED - For Official Use

╼п>+=:п===пп п==:=пп = +

Table of Content

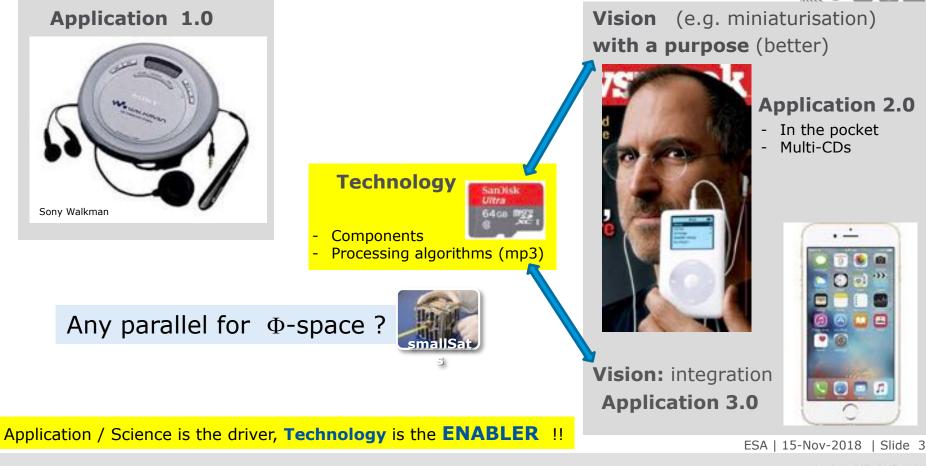
esa

Why Technology ?

Earth Observation (EOP)

- Technology Needs
- ESA Programmes with technology

Examples of EOP technology


Conclusions

ESA UNCLASSIFIED - For Official Use

= 11 🖕 == + 11 == 🚝 == 11 11 == = = 🖂 🖬 🖬 == 12 🚟 🖕 🕪

Why Technology ?

= II 🕨 :: = + II = 😑 = II II = = : :: 🖬 🛶 🔯 II = :: II 💥 🙌

Why Technology? Why early ?

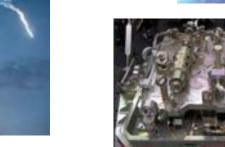
ADM-Aeolus – launched 10+ years later (2018) than initially planned

474 × 474

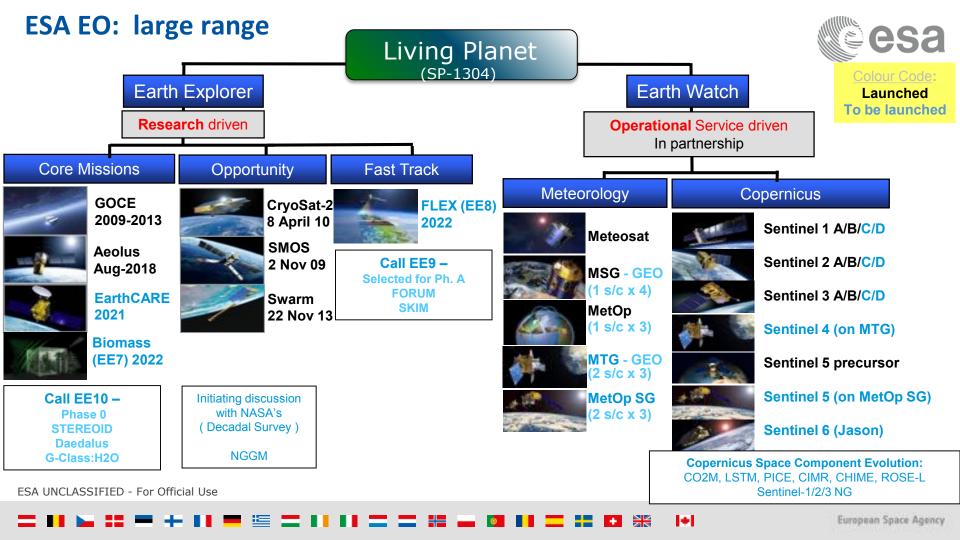
Aladin's laser technology: not ready when mission selected

Ariane-5 first launch: failure

- thought that space it was a commodity
- Software not verified under the new conditions


Lessons learnt:

- consequences of having technology not ready are very costly
- start technology development asap


ESA UNCLASSIFIED - For Official Use

· = ■ ► = = + ■ = = = = ■ ■ = = = = ■ ■ ■ ■ = = = ■ ₩

ESA | 15-Nov-2018 | Slide 4

EO Technology needs

Higher performance / cost ratio

- New Measurements (enabler)
- Higher spatial and temporal resolution
- Higher **lifetime** (7 yrs \rightarrow 10 yrs or more)
- Increased flexibility (advanced manufacturing, re-programmable FPGA onboard, COTS)
- Faster to design/develop and deploy
- Long-term data **continuity** \rightarrow BIG DATA + AI
- Platform : Lower recurring cost (COTS),

with specific EO needs (AOCS, storage, comms speed, more autonomy)

Miniaturisation and constellations (incl. convoys and formations)

- More autonomous platform & operations
- Distributed Ground Segment
- Synchronisation (with ISL beacon and/or with GNSS)
- Launcher techno for efficient access to space
- lower cost, fast-to-market ability, adaptability and flexibility.

Mainly, but NOT LIMITED to LEO: also High-Elliptic (HEO) and GSO (e.g. G-Class EE-10).

ESA UNCLASSIFIED - For Official Use

ESA | 15-Nov-2018 | Slide 6

ESA Technology Programmes

EOP Technology under 3 programmes:

- TDE (former TRP): up to TRL 3-4
- GSTP : higher TRLs
- EOEP : all TRLs (from concept to flying products)

ESA Matrix: Collaboration between Application (**D/EOP**) and Support Directorates (**D/TEC** & **D/OPS**)

- **Multi-year** (TDE-GSTP) **Workplan** preparation via **TECNET** WGs
- **Executing** individual activities: ITT prepar., Evaluations, Tech. Officer assignment
- Harmonisation (also with EU)

	TDE	CTP	GSTP	RTES	ECI	EOEP	SciSpacE	ExPeRT	EGEP	ETP	FLPP
FRL 1 Basic principle observed and reported											
TRL 2 Technology concept and an application formulated											
TBL 3 Analytical and experimental critical function and/or characteristic proof-of-concept.											
TRL 4 Component and/or breadboard functional verification in Saboratory environment											
TRL 5 Component and/or breadboard pricical function verification in a relevant environment.											
TRL 6 Model demonstrating the critical functions of the element in a relevant environment.											
IRL 7 Model demonstrating the element performance for the operational orwinoment.											
TRL & Actual system completed and accepted for flight (Hight qualified?)											
IRL 9 Ictual ayatem "Right provem" through successiful mission operations											

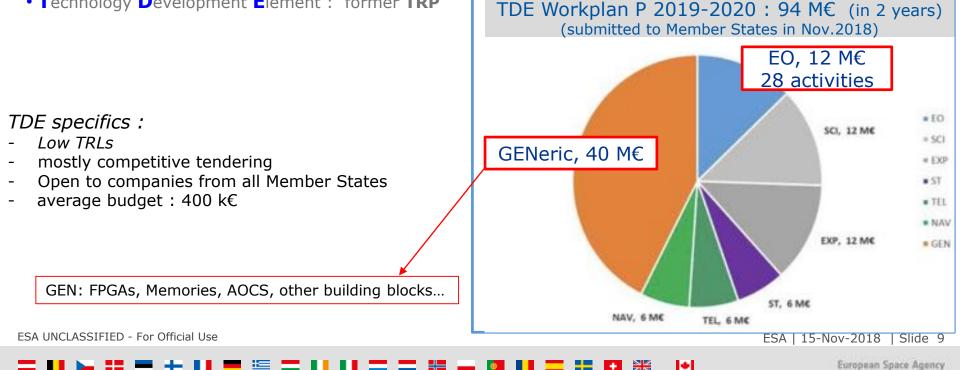
ESA UNCLASSIFIED - For Official Use

_ II 🛌 :: = + II = 😇 _ II II _ _ _ : = 12 = 0 II _ I = 13 = 0 🕷 🖕 |+|

TDE 2019-2029 - Priorities for EO

In green : top EO priorities for TDE.

Earth Expl. 10 (3 concepts for Ph.0) + 6 more for Technology	Science driven	Instrument (Optical/RF/Digital)	System (Platform + GS)	Constellation enabler (autonomy, GS,)	TDE + EOEP + GSTP
Copernicus & Meteo Evolution	User driven	System of Systems (architecture, formation)	Std/ Common Platforms / GS: e.g. high speed techno, autonomy,	Constellation management	EOEP + Copernicus
Space 4.0 (incl. Φ work)	Innovation driven	Full Instrument Miniaturisation + OB processing	Mission - SmallSats /CheapSats - Hosted P/L	Big Data : AI (Deep/Machine Learning)	TDE + EOEP + InCubed + GSTP

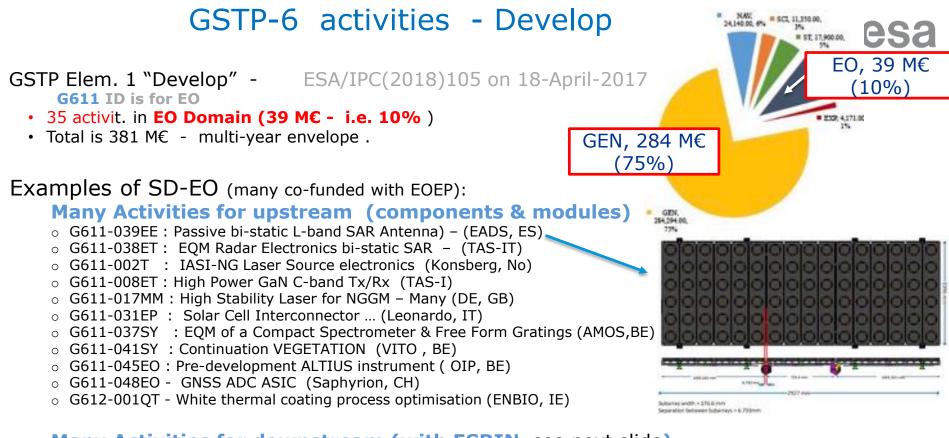

ESA UNCLASSIFIED - For Official Use

Basic Activities, including TDE

- Changes in 2017 led to the creation of the **DPTDE** programme within ESA's Basic Activities:
 - former SysNova, ITI, NPI, Ariadna,... and other TEC-run activities (e.g. ACT) in principle supporting also optional programs (e.g. Φ -Lab), TBC • **D**iscovery:
 - former **GSP** often used to support Ph.0/A studies • **P**reparation:
 - Technology Development Element : former TRP

GSTP (General Support Technology Programme)

GSTP specifcs :


- High TRLs → Budgets larger than for TDE
- It is an OPTIONAL programme
 - → Tendering limited to companies from countries supporting the specific activity
- Our interest: EO and also GEN Serv.Domains

Three Elements :

- Elem. 1: Develop
- Elem. 2: Make
- Elem. 3: Fly

ESA UNCLASSIFIED - For Official Use

Many Activities for downstream (with ESRIN, see next slide)

ESA UNCLASSIFIED - For Official Use

European Space Agency

ESA | 15-Nov-2018 | Slide 11

and the second second

GSTP-6 Elem.2 "Make" EO activities 2013- 2018

ESA/IPC(2017)110 Product oriented - with co-funding scheme (typically 50% by company) Stepped approach: 1st outline proposal + 2nd full proposal

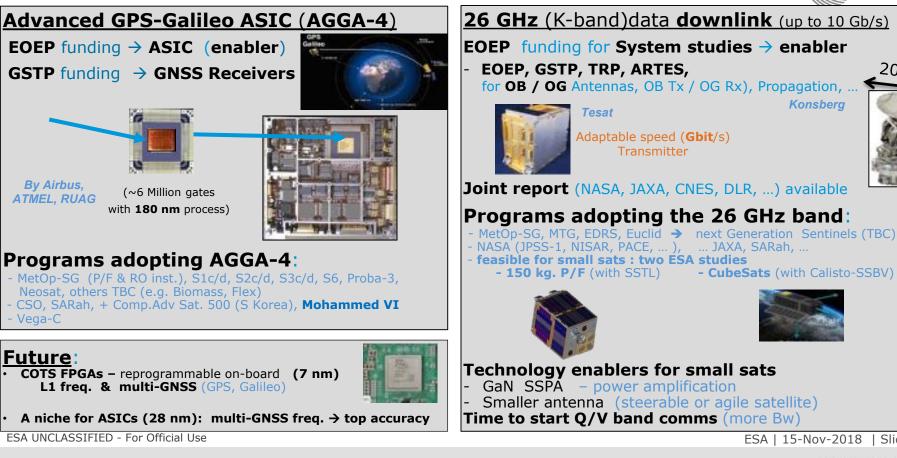
- 10 activities in Domain EO (11.6 M€ i.e. 17% of 70 M€ total)
- not necessarily aligned with ESA EOP (partly driven by National interests)

Activity ID	Title	Class	EO also interested in the GENERIC-part . e.g.
G 621 -001MM	Optimisation and valorisation of long, modular linear InGaAs imagers	Upstream Techno	- GNSS Receivers G627-003ET
G 621 -008EP	PCDU Product Line Building Blocks	Upstream Techno	- Mass Memories G627-089ED
G 621 -011MM	STREEGO – Innovative Solutions for High Resolution Small Satellites	System / Upstream	
G 621 -014SE	EO driven Landscape Infrastructure Modelling	Downstream	
G 621 -031MM	High performance SWIR detector for high resolution land observation payload	Upstream Techno	
G 621 -033MM	Development for future high resolution land observation payload	Upstream Techno	EO InCubed (also co-funded + stepped Program)
G 621 -053SY	sat4EO	System / Upstream	
G 621 -076ET	Multimission Direct Access Terminal for PAZ, TerraSAR and Other Satellites	Upstream Techno	- NEW (since 2017)
G 621 -079ET	Land analytics EQ Blatform		→ More co-ordination with GSTP in the future
GOZ 1-0/9E1	Land analytics EO Platform	Downstream	
G <mark>621</mark> -064ED	Image Compression Module	Upstream Techno	

ESA | 15-Nov-2018 | Slide 13

ESA UNCLASSIFIED - For Official Use

Examples of developments


By Airbus,

ATMEL. RUAG

- Vega-C

Future:

Joint report (NASA, JAXA, CNES, DLR, ...) available

Programs adopting the 26 GHz band:

Konsberg

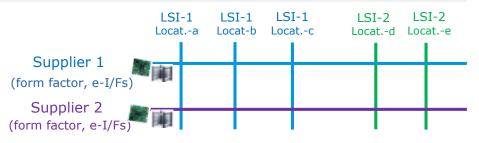
Technology enablers for small sats

Smaller antenna (steerable or agile satellite) Time to start Q/V band comms (more Bw)

> Slide 14 ESA | 15-Nov-2018

+

Optimise Standard Platform → more resources for the Payload

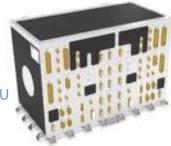


Lower Cost + Faster to adopt

Mind EOP specific requirements: AOCS, Storage, downlink

Platform Needs:

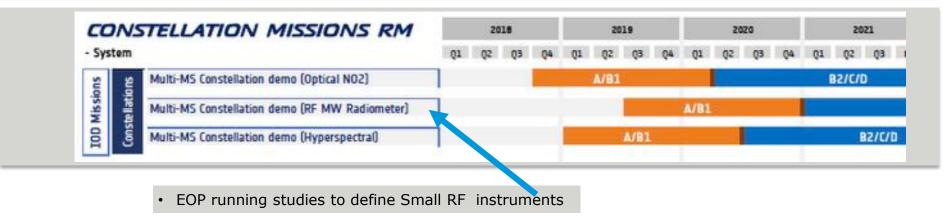
- Architecture evolution
 - Miniaturisation (units → boards → components)
 - \circ more Integration (AIT) → potential savings
 - $_{\odot}~$ Higher performance (speed) + functionality (protocols)
- Standardisation:
 - Common interfaces (electrical & mechanical form-factor)
 - $\circ~$ Multi-source suppliers :
 - \checkmark interchangeable modules
 - ✓ newcomers (incl. COTS)


ESA UNCLASSIFIED - For Official Use

Standardisation done for Cubesats \rightarrow big success

Learning from NewSpace Industrial challenge: collaboration (big & SMEs)

Multi-board SMU: OBC, GNSS, SSMM, mini-RIU


ESA | 15-Nov-2018 | Slide 15

= II 🖕 == + II = 🔚 = 🗄 = II II = = = 🖽 🛶 🔯 II = = II 🗰 🗰 👀

GSTP Elem. 3 - Fly

- ESA Roadmap & Workplan for IOD CubeSat missions and Technologies ESA/IPC(2018)79
- → several smallsats are relevant for EO..
- → Three Phase A planned for 2019 (inspired from SYSNOVA studies, GSP funded, with EOP participation)

Good D/EOP & D/TEC co-ordination :

- EOP uniqueness: <u>USER DRIVEN</u> approach + need for <u>highly calibrated P/L</u>
- EOP is benefitting from GSTP Fly Technology

FSSca

ESA UNCLASSIFIED - For Official Use

ESA | 15-Nov-2018 | Slide 16

= II 🖕 :: = + II = 😑 = II II = = : :: 🖬 🛶 🔯 II = :: II 💥 🙌

EOP Small Sats (EOEP funded activities)

Sentinel Small Sat. (S3)- Challenge - FSScat (UPC Barcelona) selected in 4Q-2017 : with two 6U Cubesats - Sat-1: GNSS-R + radiometer & Sat-2: HyperScout + InterSat Links

New challenge for SmallSat concepts- current plan:

- 4 phase-A studies (ITT planned for 1Q-2019)
- development depending on resources allocation in CMIN-19

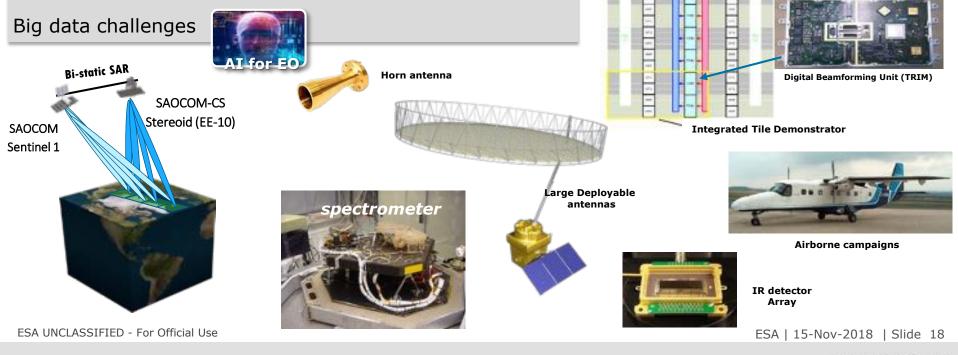
Defining EOP landscape for small sats

- For Microwave Instruments (2 studies: Omnisys, HARP) ending in 2Q-2019
- For optical instruments (being initiated)

Inspiring looking outside: e.g. NASA's "ESTO Invest" good results

ESA UNCLASSIFIED - For Official Use

European Space Agency


FSScat (launch in 3Q-2019)

Core business not to be forgotten

European Space Agency

- Preparing new instruments and observation techniques
- RF & Optical
- from concept, Components & HW demonstrators, up to qualified models
- for satellites (and airborne campaigns)

_ II ⊾ == + II **=** ≝ _ II II = = = M **■** ■ II _ II ₩ ...

Future EO: leveraging the digital revolution (Technology as enabler)

10^x More Data

Rapid Innovation

New Solutions / Partnerships

Expanding EO Landscape: Copernicus 2.0 + Meteo SG + Science + Commercial / SmallSat Constellations..

Cloud Computing Big Data Analytics

Demo end-to-end distributed smart sensing systems (AI+EO+HAPS ... +IoT)

HAPS, UAV,..

AI, esp. Deep Learning, Autonomous Syst.

Environment for Rapid Innovation / Prototyping, to test ideas via Proof of Concept, Challenges, Hack, Research/Sprint

IoT, Open Data

Miniaturisation & Integration

Foster New Partnerships (e.g. ICT, startup, investors, nonspace users), New start-up

Conclusion

EARTH OBSERVATION: USER DRIVEN with wide range of innovation

- o Technology is the ENABLER → start early
- EOP Technology NEEDS:
 - Higher performance / cost ratio (also faster design & deployment)
 - Opening to Constellations (Space 4.0)

esa

Large range of Technology under EOEP & (TDE + GSTP) Program (in collaboration with D/TEC- D/OPS):

- from concept to qualified equipment
- from micro (component) to macro (equipment, system)
- focus on instruments (RF, Optical) & Platform and downstream too

Harmonisation (also with EU) on-going - not discussed today

Trends:

- **Spin-in** : COTS + digitisation (FPGA re-programmable on-board) + smart manufacturing + Artif. Intelligence
- Miniaturisation opening new applications: for Institutional & Space 4.0
- Standardisation required to foster industrial collaboration

ESA UNCLASSIFIED - For Official Use